РЕНТГЕНОГРАФИЧЕСКОЕ И ИК-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОДУКТОВ ИЗВЕРЖЕНИЙ ВУЛКАНОВ (НА ПРИМЕРЕ ИЗУЧЕНИЯ МИНЕРАЛЬНЫХ НОВООБРАЗОВАНИЙ ВУЛКАНИЧЕСКИХ ЭКСГАЛЯЦИЙ)

Назарова М.А.

Институт вулканологии и сейсмологии ДВО РАН г. Петропавловск-Камчатский

Научный руководитель к.г.-м.н. Вергасова Л.П.

С поступлением в Аналитический центр Института вулканологии и сейсмологии современных приборов дифрактометра XRD-7000 и ИК-Фурье спектрофотометра IRAffinity-1 стало возможным использование таких прецизионных методов как порошковая рентгенография поликристаллов и инфракрасная спектроскопия. Проведены работы с целью определения методических возможностей по использованию их при изучении продуктов извержения.

Ключевые слова: инфракрасная спектроскопия, порошковая дифрактометрия, минералы вулканических эксгаляций, нашатырь.

ВЕДЕНИЕ.

Изучались пробы новообразований, содержащие нашатырь, из продуктов деятельности фумарол Большого трещинного Толбачинского извержения (БТТИ, Камчатка 1975-1976 гг.). Пробы для работы были предоставлены из коллекции Л.П. Вергасовой. Место отбора проб – лавовые потоки южной и северной бокк Первого конуса Северного прорыва БТТИ (лавовые потоки № 1 и 2, рис. 1). Время отбора – август 1975 г. Схематическая карта (рис. 1, [3]) передает колоссальность извержения, в результате которого возникла цепь новых шлаковых базальтовых конусов с лавовыми потоками, залившие площадь 45 км² [2]. На ранней стадии консолидации лавовых потоков нашатырь является ведущим минералом по частоте встречаемости и мощности инкрустаций в интервале температуры от более 100 и до 300 °С. Отложения нашатыря выделялись разнообразием агрегатных форм от тонких налётов, в виде изморози до пластичных образований в виде трубок, пузырей у одиночных выходов газов и трещин (рис. 2), а также отдельных корок и сплошных покровов в местах многочисленных выходов мелких газовых струй.

- Рис. 1. Схематическая карта лавовых потоков Северного прорыва БТТИ.
 - 1 шлаковые конусы Северного прорыва (I, II, III); 2 лавовые бокки;
 - 3 номера лавовых потоков [3].

Мощность эксгаляций, сложенных, преимущественно, агрегатами нашатыря составляла в среднем 0,5-1см.

На рис. 2 видно, что отложения нашатыря образуют своеобразные оторочки - микроконуса вокруг выходов газов. Высота таких образований достигала 10 см и более при толщина стенок до 1-2 см. Максимальная мощность плотных инкрустаций нашатыря в виде корок (Тол-86/75, температура на гл. 10 см - 300 °C) составляла 5-7 см (рис. 3 *a*). Корки, в основном, имели псевдошестоватую структуру с ячеистой поверхностью со стороны субстрата-шлакового покрова (рис. 3 *б*, *в*). Более четко шестоватая структура корочек нашатыря проявлена на рис. 3г (Тол-95а/75).

Рис. 2. Отложения нашатыря на лавовых потоках Второго конуса Северного прорыва БТТИ.

в.

г.

Рис. 3. Корки нашатыря: *a)* фрагмент плотной корки значительной мощности; *б)* вид ячеистой поверхности корки со стороны субстрата; *в)* псевдошестоватая структура корки на свежем сколе; *с)* корка нашатыря с ярко выраженной псевдошестоватой структурой.

В нишах и закрытых промежутках между обломками лав встречались друзы несовершенных кристаллов. Для фумарольного нашатыря БТТИ характерны скелетные формы роста несовершенных кристаллов в виде «елочек» (рис. 4 *a*) и гроздьев (рис. 4 *c*); индивиды шестоватых агрегатов имели окончания в виде ромбоэдров (рис. 4 *б*) и несовершенных кристаллов со ступенчато вогнутыми гранями (рис. 4 *в*). Были изучены пробы нашатыря с различной окраской, а именно прозрачные разности белого, медово-бурого цвета, голубоватого, жёлтого и оранжевого цветов, тонкодисперсные непрозрачные разности, имеющие более насыщенную окраску (до рыже-бурого цвета), а также нашатырь молочно-белого цвета (за счет наличия многочисленных газовых включений) и грязно-белого цвета, насыщенный пепловыми частицами.

в.

г.

Рис. 4. Формы несовершенных кристаллов фумарольного нашатыря: *а* – скелетный рост несовершенных кристаллов нашатыря в виде «елочек» и *г* - в виде гроздьев; *в* - кристаллы со ступенчато вогнутыми гранями: *б* – окончания кристаллов в виде ромбоэдров.

Окраска прозрачных нашатырей зависит от присутствия незначительного количества примесей. Например, в бледно-зеленом нашатыре присутствует медь (до 0,1 масс. %). Бурая окраска возможно обусловлена присутствием органики - продуктов обугливания и сухой перегонки травянистой и кустарниковой растительности, погребенной лавовыми потоками. Желтые и оранжевые краски могут объясняться наличием соединений железа, которые являются побочным продуктом переработки пеплов и шлаков газами, содержащими хлор. Для тонкозернистых и дисперсных непрозрачных разностей нашатыря характерно присутствие примесных фаз [3].

Рис. 5. Дериватограмма пробы Тол.-77-1/75, рыже-бурого тонкодисперсного нашатыря с примесью других фаз. Примечание. ДТА – 1/10, ДТГ – 1/5, ТГ – 800/300, тигель корундовый. Аналитик: А. В. Мясников, ИВиС.

Результаты изучения нашатырей с лавовых потоков БТТИ [4], полученные ранее другими методами - это микроскопия с использованием иммерсии, рентгеновские исследования фотометодом, химические - методом слабо-кислой (1:20) вытяжки (табл. 1) и дифференциально-термический анализы [4] (рис. 5).

Компонент	Тол-77/75	Тол-77 ₁ /75	Тол-77 ₁ /75
	1	2	3
NH4 ⁺	5.4	1.60	13.60
Na ⁺	0.58	0.41	0.84
K^+	0.12	0.16	0.24
Ca ⁺⁺	2.00	1.00	1.97
Mg^{++}	4.01	1.82	5.71
Fe ³⁺	3.05	0.65	5.40
Al^{+++}	2.27	1.30	5.20
Cu ⁺⁺	0.18	1.53	0.26
Zn^{++}	0.00	0.0	< 0.02
Pb^{++}	0.0	0.01	< 0.12
Cl	28.4	6.56	42.22
F	3.15	2.28	1.99
$SO_4^{}$	не опр.	6.48	3.32
H_2O^-	13.00	2.50	17.9
H_2O^+	17.85	8.35	не опр.
Нераств.остат.	20.04	65.05	не опр.
Сумма	100.05	99.73	98.65

Таблица 1. Химический состав рыже-бурых корок, содержащих нашатырь (лавовый поток Первого конуса СП БТТИ, 1975 г., % масс.)

Примечание: аналитики В.В. Дунин-Барковская. - 1, 2, С.В. Сергеева – 3.

МЕТОДИКА ИССЛЕДОВАНИЙ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

С использованием новой аппаратуры дифрактометра XRD-7000 (съемка порошкограмм) и инфракрасного спектрофотометра с Фурье преобразователем IRAffinity-1 проведены дифракционные исследования более 10 проб и получено столько же ИК-спектров образцов природных соединений NH₄Cl, отличающихся по цвету, агрегатному состоянию и парагенезису. В табл. 2 приведены линии межплоскостных расстояний монофракций проб нашатыря - от прозрачных до окрашенных в различные цвета. Результаты порошковой дифрактометрии демонстрируют хорошую сходимость природных нашатырей с эталоном (искусственное соединение NH₄Cl, рентгеновская картотека PDF-2). Расхождения по интенсивностям не значительны. Анализ дифрактометрических данных пробы тонкозернистого непрозрачного нашатыря рыже-бурого цвета (табл. 3) подтвердил присутствие примесных минеральных фаз, среди которых, наиболее вероятно нахождение ральстонита Na_xMg_xAl_{2-x}(F,OH)₆·yH₂O.

NH ₄ Cl, PDF-2 карт. 07-0007	Тол-75/75 Белого цв.	Тол-95а/75 Голубовато- го цв.	Тол-84/75 Медового цв.	Тол-71-1/75 Желтого цв.
d (I)	d (I)	d (1)	d (I)	d (I)
3.87 (25)	3.88(13)	3.88(13)	3.88 (11)	3.88 (11)
2.74 (100)	2.74 (100)	2.74(100)	2.74 (100)	2.74 (100)
2.24 (4)	2.24 (6)	2.24 (6)	2.24 (6)	2.24 (7)
1.94 (8)	1.94 (9)	1.94 (15)	1.94 (9)	1.94 (13)
1.73 (6)	1.73 (6)	1.73 (8)	1.73 (6)	1.73 (9)
1.58 (25)	1.58 (18)	1.58 (23)	1.58 (20)	1.58 (25)
1.37 (6)	1.37 (4)	1.36 (7)	1.37 (5)	1.37 (6)
1.29 (4)	1.29 (3)	1.29 (4)	1.29 (3)	1.29 (4)
1.23 (6)	1.23 (4)	1.23 (6)	1.23 (4)	1.23 (6)
1.17 (4)	1.17 (1)	1.17 (2)	1.17 (1)	1.17 (1)
1.12 (2)	1.12 (1)	1.12 (2)	1.12(1)	1.12 (1)
1.07 (2)	1.07 (1)	1.07 (1)	1.07 (1)	1.07 (1)
1.04 (4)	1.04 (5)	1.04 (6)	1.04 (5)	1.04 (6)

Таблица 2. Дифрактограммы нашатырей с лавовых потоков СП БТТИ в сопоставлении с данными по нашатырю рентгеновской картотеки PDF-2.

Примечание. Дифрактометр XRD-7000. Режим съемки: CuK_α - излучение, напряжение 30 кВ, ток 30 мА, 2°/мин. Аналитик М.А. Назарова (АЦ ИВиС ДВО РАН).

Присутствие в пробе ральстонита не противоречит данным химических (табл. 1) и дифференциально-термического анализов. На дериватограмме (рис. 5) четко выражен экзотермический подъем вблизи 500 °C по кривой нагревания [6].

По некоторым интенсивным линиям d(Å) (см. табл. 3) в пробе, также можно предположить присутствие еще одного минерала - акагенеита Fe⁺³O(OH, Cl). Интерпретация примесных фаз затруднена из-за присутствия в пробе пепловых частиц, отделение которых не представлялось возможным.

Тол-77 ₁ /75	Нашатырь NH ₄ Cl PDF-2, карт. 07-0007	Ральстонит NaMgAlF ₆ ·H ₂ O PDF-2 карт 18-1085	Акагенеит Fe ⁺³ O(OH) PDF-2 карт 34-1266
d(I)	d(I)	<i>d(I)</i>	$\frac{1012, \text{ mpro} + 1200}{d(I)}$
1	2	3	4
7.58 (24)			7.47 (40)
5.77 (63)		5.74 (100)	5.27 (30)
3.88 (25)	3.87 (25)	4.98 (14)	3.73 (5)
3.51 (45)			
3.34 (55)			3.33 (100)
3.15 (16)			
3.00 (85) 2.88 (40)		3.01 (55)	
2.87 (41)		2.88 (75)	
2.84 (12)			
2.74 (100)	2.74 (100)		
2.72 (35)			2.63 (25)
2.56 (18)			
2.55 (21)			2.55 (55)
2.54 (17)			
2.48 (13)		2.49 (14)	2.48 (2)
2.29 (17)	2.24 (4)	2.29 (30)	2.29 (35)
2.03 (15)		2.04 (25)	
1.93 (32)			1.95 (20)
1.92 (31)	1.94 (8)	1.92 (40)	
1.91 (36)			
1.76 (41)		1.76 (85)	1.76 (15)
1.75 (15)			
1.65 (18)	1.73 (6)	1.68 (10)	1.64 (35)
1.58 (16)		1.58 (16)	
1.52 (12)	1.58 (25)	1.52 (16)	
1.50 (11)	1.37 (6)	1.50 (40)	
1.30 (12)	1.29 (4)	1.30 (14)	
1.23 (4)	1.23 (6)	1.25 (20)	
1.17 (3)	1.17 (4)	1.17 (16)	
	1.12 (2)		

Таблица 3. Дифрактограмма нашатыря с примесными фазами в сопоставлении с данными рентгеновской картотеки PDF-2 по искусственным соединениям NH_4Cl , Na Mg Al F_6 · H_2O , $Fe^{+3}O$ (OH).

Примечание. Дифрактометр XRD-7000. Режим съемки: Си K_{α} – излучение, напряжение 30 кВ, ток 30 мА, 2°/мин. Аналитик М.А. Назарова (АЦ ИВиС ДВО РАН).

Рис. 6. Дифрактограмма нашатыря с примесными фазами (пробы Тол - 771/75).

Эксперименты по определению инфракрасного спектра нашатыря проводились на современном инфракрасном Фурье-спектрофотометре IRAffinity-1 фирмы Shimadzu, с использованием прессования таблетки образца со спектрально чистым KBr. Полученные инфракрасные спектры расшифровывались по справочным данным [1, 5, 7, 8].

Рис. 7. Инфракрасные спектры монофракций нашатыря имеющие разную окраску. Примечание. Фурье-спектрометре IRAffinity-1. Аналитик: М.А. Назарова.

На рис. 7 показаны ИК-спектры монофракций нашатыря NH₄Cl, на котором из возможных четырех нормальных колебательний тетраэдрических молекул наблюдаются только два колебания валентное v_d (H-N) и деформационное δ_d (N-H-N). Колебания 1750 см⁻¹ либрационное колебание решетки представлены составной частотой, так как в этих кристаллах ион NH₄⁺ не может свободно вращаться [5].

Рис. 8. Инфракрасный спектр пробы Тол-77₁/75 содержащей нашатырь с примесными фазами (ральстонит, акаганеит). *Примечание*. Фурье-спектрометре IRAffinity-1. Аналитик: М.А. Назарова.

На инфракрасном спектре (рис. 8) пробы Тол-77₁/75 полосы поглощения нашатыря 1412; 3050; 3180; 3250 см⁻¹ [5], полосы поглощения ральстонита 463; 640; 875; 1119; 1165; 1412; 1645; 3390 см⁻¹ [1], полоса поглощения акагенеита 430 см⁻¹ [7]. Для полного отнесения всех пиков поглощения, проявивщихся на ИК-спектрах, необходимо проведение факторгруппового анализа.

ВЫВОДЫ.

Сравнение результатов исследований с использованием новой современной аппаратуры, которой располагает в настоящее время Аналитический центр ИВиС ДВО РАН с результатами, полученными ранее, показало возможным применение таких прецизионных методов, как рентгенография поликристаллов и инфракрасная спектроскопия для идентификации минералов вулканических эксгаляций.

Автор выражает благодарность Л.П. Вергасовой за предоставление образцов для исследований.

ЛИТЕРАТУРА

- 1. Болдырев А. И. Инфракрасные спектры минералов. Изд.: Недра. 1976. 199.С. 119
- 2. Большое трещинное Толбачинское извержение. Камчатка 175-1976 /под редакцией С. А. Федотова. Изд.: Наука. Москва. 1984. 673. С. 5-10
- 3. Ванде-Кирков Ю.Н., Андреев В.Н., Гусев Н.А. Эффузивная деятельность Северного прорыва (вулкан Толбачик, 1975) // Болл. вулканол. станций. 1979. № 56. С. 25-37.
- 4. Вергасова Л.П. Фумарольные инкрустации лавовых потоков эффузивноэксплозивного периода Большого трещинного Толбачинского извержения // Вулканология и сейсмология. 1983. № 6. С. 75-87.
- 5. *Накамото К*. ИК-спектры и спектры КР неорганических и координационных соединений: Пер. с англ. – М.: Мир. 1991. 536. С. 143-147.
- 6. Минералы. Справочник. М.: Наука, 1983. Т. II. Вып. 4. Галогениды. 295 с.
- 7. *Плюснина И.И.* Инфракрасные спектры минералов. Изд.: М. ун-та. 1976. 175. С.100-108
- 8. Moenke H. Mineral spektren, tt. I, II. 1966.

X-RAY-GRAPHICAL AND IR-SPECTROSCOPIC INVESTIGATION OF ERUPTED MATERIALS (IN CASE OF MINERAL VOLCANIC EXHALATION).

Nazarova M.A.

Institute of Volcanology and Seismology FEB RAS Petropavlovsk-Kamchatsky

By using X-ray diffractometer XRD-7000 and Fourier transform infrared spectrophotometer IRAffinity-1, it became possible conduct precise methods of investigation as x-ray-graphical polycrystals and infrared spectroscopy. Analyses have been conducted with the purpose to apply this technique to studying erupted materials.

Key words: infrared spectroscopic, powdered diffractometry, minerals volcanic exhalation, salammoniac.