Состав пород подводного вулкана Эсмеральда (Марианская островная дуга) Ананьев В.В. I , Петрова В.В. 2 , Рашидов В.А. I

The composition of the rocks of the underwater Esmeralda volcano (Mariana Island arc) *Ananiev V.V., Petrova V.V., Rashidov V.A.*

Приводятся сведения о составе пород, слагающих постройку подводного вулкана Эсмеральда в Марианской островной дуге, опробованных в 4-м и 5-м рейсах научно-исследовательского судна «Вулканолог». Изученные породы базальтового и андезибазальтового состава нормальной щелочности относятся к остороводужной толеитовой высокожелезистой серии.

Подводный вулкан Эсмеральда расположен на западном подводном склоне южной части Марианской островной дуги в 28-35 км от островов Сайпан и Титиан (рис. 1). Его диаметр по изобате 1500 м составляет 15-20 км, минимальная глубина 43 м, а объем ~ 127 км 3 . На вершине вулкана расположен кратер диаметром 2-3.5 км и глубиной 200-300 м.

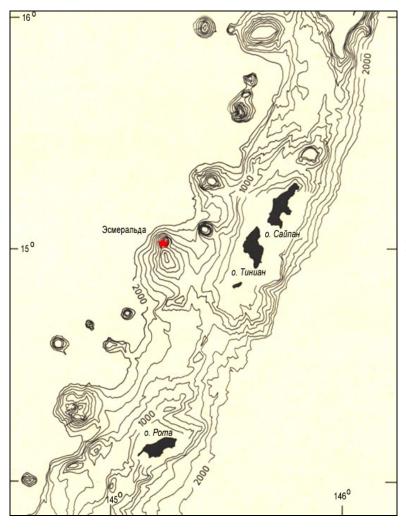


Рис. 1. Местоположение подводного вулкана Эсмеральда.

Вулкан был обследован в 4-ом и 5-ом рейсах научно-исследовательского судна (НИС) «Вулканолог» в январе и июле 1978 г. [1]. В декабре того же года вулкан был исследован в рейсе НИС «Томас Вашингтон» [6], а в июле-августе 1990 г. – в рейсе SO-69 НИС «Зоне» [7].

¹ Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский; e-mail: rashidva@kscnet.ru

² Геологический институт РАН, г. Москва

Результаты предыдущих исследований показали, что по минеральному составу среди пород, драгированных в рейсах НИС «Вулканолог», выделены базальты, андезибазальты, долеритобазальты и габброиды, а фумарольные новообразования представлены самородной серой, гипсом, опалитами, алунитами, гидроокислами и сульфидами железа [1].

Нами были выполнены 14 новых анализов химического состава драгированных горных пород (таблица).

Таблица. Состав горных пород, драгированных в рейсах НИС «Вулканолог»

№ п/п	1	2	3	4	5	6	7	8	9	10
№ обр.	B4-1	B-4- 31	B-4- 3/3	B-4-3a	B-4- 5/1	B-4- 27	B-4-30	B-5-6- 72	B4-6	B4-2
SiO ₂	46.61	48.54	48.54	48.53	50.73	49.00	49.09	49.84	52.35	53.28
TiO ₂	2.31	1.35	1.25	1.24	1.42	1.29	1.29	1.28	1.50	1.44
Al_2O_3	15.49	16.96	16.93	17.42	15.98	18.81	17.59	17.97	13.51	13.75
Fe ₂ O ₃	0.17	2.97	4.91	4.65	3.31	2.79	3.63	1.66	2.04	1.22
FeO	12.18	10.89	8.54	8.81	9.35	9.29	9.94	10.19	13.00	12.93
MnO	0.17	0.24	0.16	0.16	0.18	0.17	0.18	0.18	0.29	0.27
MgO	6.66	2.89	3.45	3.21	2.81	2.41	2.85	2.76	2.30	2.37
CaO	6.85	9.90	10.56	10.83	9.28	10.08	10.03	10.10	7.16	6.98
Na ₂ O	4.52	3.22	3.19	2.82	4.34	3.69	3.15	3.66	3.95	3.89
K ₂ O	2.75	0.87	0.47	0.49	0.66	0.53	0.52	0.52	1.38	1.36
P_2O_5	0.59	0.14	0.15	0.16	0.27	0.17	0.16	0.16	0.22	0.22
ППП	1.36	1.22	1.24	1.31	0.80	1.10	1.21	1.23	1.45	1.44
Сумма	99.66	99.19	99.39	99.63	99.13	99.33	99.64	99.55	99.15	99.15

№ п/п	11	12	13	14	15	16	17	18	19	20
№ обр	B-4- 7/10	B-4- 3/1	B4- 7/3	5B-6- 82	6/2	6/1	31/2	3/18Б	7/1	7/6
SiO ₂	55.00	62.99	48.64	50.32	55.42	55.68	52.65	51.12	50.76	51.36
TiO ₂	1.33	0.43	1.20	0.80	1.12	1.12	0.97	0.92	0.88	0.94
Al_2O_3	17.23	16.22	18.79	15.57	13.41	12.78	17.25	17.79	18.05	15.27
Fe_2O_3	4.63	2.30	1.78	2.25	1.91	1.87	2.67	2.02	2.44	5.73
FeO	4.03	3.90	9.50	6.70	10.71	10.86	8.44	8.32	8.50	6.31
MnO	0.06	0.10	0.20	0.38	0.27	0.27	0.20	0.20	0.20	0.20
MgO	3.72	1.94	3.37	9.79	2.62	3.10	3.31	3.36	3.42	3.58
CaO	8.48	6.45	10.89	10.16	7.94	7.72	10.69	11.06	11.06	10.69
Na ₂ O	3.43	2.99	3.16	2.30	3.39	3.31	2.62	2.49	2.57	2.81
K ₂ O	0.38	1.03	0.60	0.62	1.55	1.47	0.88	0.88	0.85	0.88
P_2O_5	0.35	0.21	0.14	0.17	0.34	0.34	0.21	0.19	0.21	0.19
ППП	0.49	0.74	1.06	1.13	0.84	0.84	0.81	1.21	0.38	1.77
Сумма	99.13	99.30	99.33	100.19	99.52	99.36	100.70	99.56	99.32	99.73

Обобщение имеющейся информации [1, 2, 5, 6, 8] показало, что по химическому составу подавляющее большинство пород, драгированных в рейсах НИС «Вулканолог», представлено базальтами и андезибазальтами (рис. 2).

Из общего ряда выпадают только два образца: образец № 1 соответствует щелочной (сумма щелочей 7.27 %) серии пород и отличается высокими содержаниями Ti, Rb, Sr, Ba, Zr, Nb и вкрапленниками плагиоклаза ($An_{57\pm0.02}$) с содержанием SrO до 0.8 %, а образец № 12 является дацитом.

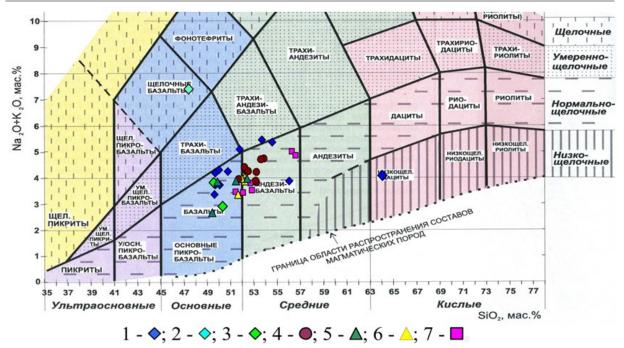


Рис. 2. Диаграмма TAS химической классификации магматических пород. 1-3 — данные авторов $(1-9 \varphi \varphi)$ узивы; 2- щелочной базальт; 3- габбро); 4- данные из работы [7]; 5- данные из работы [5]; 6- данные из работы [8]; 7- данные из работы [1].

По петрохимическим характеристикам все анализы, кроме образца № 1, соответствуют остороводужной толеитовой высокожелезистой серии пород (рис. 3, 4).

В результате выполненных работ исследованы петрохимические характеристики образцов пород, опробованных в рейсах НИС «Вулканолог» на разных участках постройки вулкана Эсмеральда, а полученные данные позволяют отнести породы базальтового и андезибазальтового состава нормальной щелочности к остороводужной толеитовой высокожелезистой серии.

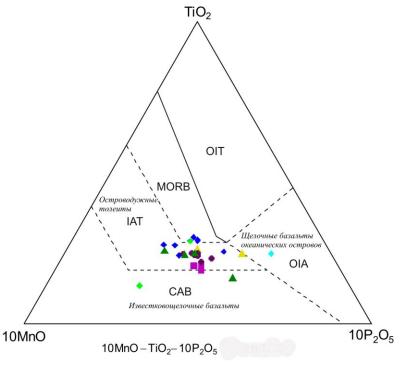


Рис. 3. Дискриминационная диаграмма MnO-TiO₂- P_2O_5 [4].

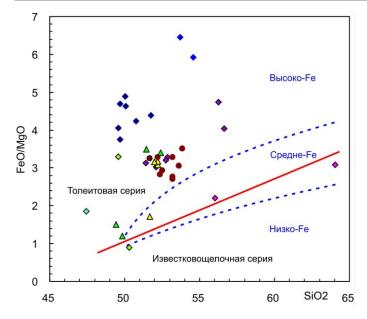


Рис. 4. Диаграмма FeO/MgO – SiO₂ [3].

Полученные нами данные расширяют поле составов вулкана Эсмеральда, опубликованное в работе [6], – выделены два новых, не встреченных здесь ранее, типа пород – дацит и щелочной высококалиевый базальт.

Плодотворная интеграция сотрудников институтов РАН в очередной раз показала, что материалы, полученные в рейсах НИС «Вулканолог» и хранящиеся должным образом, являются уникальными, востребованными и позволяют получать новые данные о проявлении подводного вулканизма в Тихом океане.

Список литературы

- 1. *Горшков А.П., Абрамов В.А., Сапожников Е.А. и др.* Геологическое строение подводного вулкана Эсмеральда // Вулканология и сейсмология. 1980. № 4. С. 65-78.
- 2. *Колосков А.В.*, *Рашидов В.А.*, *Ананьев В.В.* Первая находка шпинель-лерцолитового ксенолита «неофиолитового типа» в задуговом бассейне Марианской островодужной системы // Океанология. 2020. № 4. С. 629-647.
- 3. *Miyashiro A.* Volcanic Rock Series in Island Arcs and Active Continental Margins // American Journal of Science. 1974. V. 274. P. 321-355.
- 4. *Mullen E.D.* MnO/TiO₂/P₂O₅: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis // Earth and Planetary Science Letters. 1983. V. 62. P. 53-62.
- 5. Pearce J.A., Stern R.J., Bloomer Sh.H., Fryer P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction Components // Geochemistry, Geophysics, Geosystems. 2005. V. 6. № 7. Art. Q07006.
- 6. Stern R.J., Bibee L.D. Esmeralda Bank: Geochemistry of an active submarine volcano in the Mariana Island Arc // Contributions to Mineralogy and Petrology. 1984. V. 86. P. 159-169.
- 7. Stüben D., Bloomer S.H., Taibi N.T. et al. First results of study of sulphur-rich hydrothermal activity from an island-arc environment: Esmeralda Bank in the Mariana Arc // Marine Geology. 1992. V. 103. P. 521-528.
- 8. Wang X., Wang Z., Liu Y. et al. Calcium Stable Isotopes of Tonga and Mariana Arc Lavas: Implications for Slab Fluid-Mediated Carbonate Transfer in Cold Subduction Zones // Journal of Geophysical Research: Solid Earth. 2021. V. 126. Art. e2020JB020207.