Химический состав и условия формирования ультракислых термальных вулканических вод Курильской островной дуги

Калачева Е.Г.

Geochemistry and formation conditions of acidic thermal volcanic waters of the Kuril Island arc

#### Kalacheva E.G.

Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский; e-mail: keg@kscnet.ru

Приводится краткая характеристика химического и изотопного состава ультракислых термальных вод, разгружающихся на склонах активных вулканов Курильских островов: Парамушир, Шиашкотан, Уруп, Итуруп и Кунашир. Показано, что, в зависимости от процессов, влияющих на формирование химического состава, термальные воды делятся на три группы: Al-Ca-SO<sub>4</sub>-Cl, Ca-Na-SO<sub>4</sub>-Cl (Cl-SO<sub>4</sub>) и Na-Cl-SO<sub>4</sub>.

Одним из наиболее специфических типов термальных вод, разгружающихся на склонах вулканических построек, являются ультракислые (pH<3.5) SO<sub>4</sub>-Cl (Cl-SO<sub>4</sub>) (в зависимости от мольного отношения сульфат/хлор) вулканические воды (*Acidic Sulphate-Chloride* (ASC) – воды, по [5]). Основной механизм их формирования сводится к конденсации вулканических паров в близповерхностных условиях и/или растворение «кислых» магматических летучих (SO<sub>4</sub>, Cl, HF) в аэрированных подземных водах с образованием смеси кислот [1]. Подобные воды преимущественно распространены на вулканах островных дуг и континентальных окраин Тихоокеанского огненного кольца. На островах Курильской дуги существуют 12 вулкано-гидротермальных систем, характеризующихся наличием горизонтов ASC-вод (рис. 1).

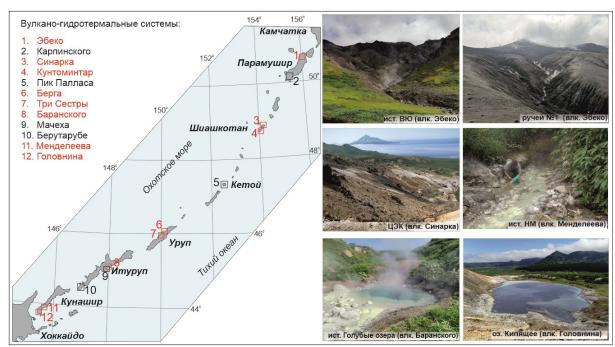



Рис. 1. Курильская островная дуга с расположением вулкано-гидротермальных систем.

В базе данных автора, полученной по результатам опробования в ходе экспедиций разных лет, есть достоверная информация по химическому составу поверхностных проявлений вод восьми гидротермальных систем, приуроченных к вулканам Эбеко (о. Парамушир), Синарка и Кунтоминтар (о. Шиашкотан), Берга и Три Сестры (о. Уруп), Баранского (о. Итуруп), Менделеева и Головнина (о. Кунашир).

Разгрузка ASC-вод на вулкане Эбеко осуществляется в двух местах: в привершинной части (рис. 1, источники Ручья № 1) и на северо-западном склоне в долине р. Юрьева (Верхне-Юрьевские источники (ВЮ)). Основные выходы на вулкане Синарка сосредоточены на его северном склоне на разном удалении от Центрального экструзивного купола (ЦЭК). Проявления Кунтоминтарской системы локализованы в кратере одноименного вулкана вблизи фумарол. На о. Уруп разгрузка осуществляется на западном склоне вулкана Берга, на некотором расстоянии от экструзивного купола вдоль русла р. Марья (источники Марьинские), и у подножия вулкана Три Сестры в районе мыса Ключевой. Выходы АSC-вод гидротермальной системы вулкана Баранского сосредоточены в долине руч. Кипящий (источники Голубые озера (ГО)). В районе вулкана Менделеева находятся три группы источников данного типа: Нижне- и Верхне-Докторские и Нижне-Менделевские. В кальдере Головнина АSC-воды разгружаются на дне оз. Кипящее (рис. 1).

# Химический состав

В Таблице приводится общий химический состав основных групп источников, охваченных гидрохимическим опробованием.

Таблица. Химический (мг/л) состав кислых ASC-вод Курильских островов.

|   |             | \ /                     |      |      |     | - 7 1                         | <i>J</i> 1      |     |                 |         |                  |           |      |      |
|---|-------------|-------------------------|------|------|-----|-------------------------------|-----------------|-----|-----------------|---------|------------------|-----------|------|------|
|   | Вулкан      | Источники               | Год  | t °C | pН  | SO <sub>4</sub> <sup>2-</sup> | Cl <sup>-</sup> | F-  | Na <sup>+</sup> | $K^{+}$ | Ca <sup>2+</sup> | $Mg^{2+}$ | Al   | Fe   |
| 1 | Эбеко       | Ручей № 1               | 2021 | 70.0 | 1.8 | 2089                          | 1112            | 9.7 | 48.1            | 25      | 161              | 43.1      | 188  | 79.5 |
|   |             | Верхне-<br>Юрьевские    | 2020 | 89.0 | 1.4 | 8880                          | 3192            | 84  | 225             | 113     | 381              | 161       | 505  | 251  |
| 2 | Кунтоминтар | кратер                  | 2016 | 76.0 | 2.3 | 6083                          | 1086            | 44  | 111             | 15      | 432              | 92        | 440  | 341  |
| 3 | Синарка     | ЦЭК, терм. пл.<br>№ 1   | 2017 | 51.0 | 2.7 | 1538                          | 2538            | 0.2 | 385             | 29.8    | 545              | 501       | 49.1 | 106  |
| 3 |             | ЦЭК, терм. пл.<br>№ 4   | 2017 | 46.3 | 2.7 | 567                           | 1665            | 5.8 | 132             | 14.7    | 291              | 141       | 70   | 2.8  |
| 4 | Берга       | Марьинский              | 2017 | 31.0 | 3.2 | 1074                          | 548             | 3.3 | 192             | 23.4    | 339              | 155       | 20   | 4.4  |
| 5 | Три сестры  | Мыс Ключевой            | 2017 | 45.0 | 2.1 | 1091                          | 234             | 1.4 | 129             | 18.1    | 235              | 47        | 13.7 | 5.9  |
| 6 | Баранского  | Голубые озера           | 2021 | 95.1 | 1.2 | 4865                          | 1838            | 31  | 112             | 44.6    | 147              | 38        | 165  | 47   |
|   | Менделеева  | Нижне-<br>Менделеевские | 2017 | 84.0 | 2.0 | 1157                          | 1135            | 1.3 | 393             | 40      | 128              | 55.3      | 30.9 | 179  |
| 7 |             | Верхне-<br>Докторские   | 2017 | 86.3 | 2.0 | 1035                          | 1363            | 1.6 | 525             | 59      | 144              | 59.3      | 25.5 | 199  |
|   |             | Нижне-<br>Докторские    | 2017 | 53.7 | 2.9 | 512                           | 784             | 0.9 | 360             | 31.4    | 117              | 43.1      | 46.5 | 146  |
| 8 | Головнина   | оз. Кипящее<br>(сток)   | 2021 | 35.0 | 2.4 | 475                           | 756             | 2.1 | 279             | 37.6    | 108              | 47.4      | 12.1 | 12.8 |

**Анионы.** Характерной особенностью анионного состава исследуемых ASC-вод является постоянное присутствие фтор-ионов в концентрациях от 1 до 80 мг/л. островодужные вулканические высокотемпературные Согласно [6]характеризуются мольным отношением Cl/F, равным 11±4. Наиболее высокие концентрации фтора и низкие отношения СІ/F имеют источники, расположенные на склонах вулканов Эбеко (Верхне-Юрьевские) и Баранского (Голубые озера), а также в кратере вулкана Кунтоминтар. На треугольной диаграмме (рис. 2а) эти воды занимают область, близкую к соотношениям высокотемпературных газов, что служит одним из сильных индикаторов наличия магматического вклада в образование ультракислых вод. Остальные источники попадают в другую группу («смешанные» воды по [5]), свидетельствующую о частичном влиянии других процессов (смешение, разбавление и т.д.) на формирование их химического состава.

Соотношение SO<sub>4</sub>/Cl в ASC-водах Курильских островов находится в диапазоне от 0.2 до 2. Максимальные значения характерны для вод, формирующихся в кратере вулкана Кунтоминтар (рис. 2б). В источниках с максимально низкими значениями рН и

высокими концентрациями фтор-ионов (Верхне-Юрьевские и Голубые озера)  $SO_4/Cl\sim 1$ . Для остальных ASC-вод Курильских островов соотношение  $SO_4/Cl< 1$ . Это может быть связано как с потерей серы при подъеме воды к поверхности или вблизи поверхности вследствие осаждения сульфатных минералов (ярозит, ангидрит, гипс и др.), так и за счет смешения с хлоридными водами.

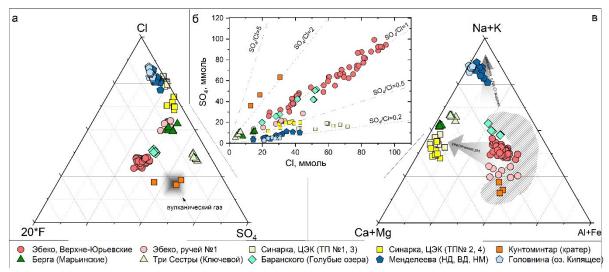



Рис. 2. Диаграммы химического состава (в молях) для ASC-вод. а − анионы, б − соотношение SO<sub>4</sub>/Cl, в − катионы, заштрихованная область − вмещающие породы.

**Катионы.** На диаграмме (рис. 2в) соотношений макрокатионов, помимо данных по составам ASC-вод Курильских островов, дополнительно показана область состава неизмененных вулканических пород, характерных для зон субдукции из [6]. Ультракислые воды, как правило, почти полностью растворяют породу, и точки их катионных составов в таком случае должны ложиться в заштрихованную область.

Однако, данные по исследуемым водам на диаграмме занимают три локальных области. В зону, близкую к породным соотношениям (1-я группа), попадают только ASC-воды, разгружающиеся на склонах вулкана Эбеко и Баранского. При этом Верхне-Юрьевские источники и источники прикратерной области вулкана Эбеко тяготеют к более основным породам, а Голубые озера – к более кислым разностям, что соответствует реальной обстановке. Постройка вулкана Эбеко сложена преимущественно андезитобазальтами, тогда как для вулкана Баранского характерны также и дацитовые породы. Источники островов Шиашкотан и Уруп занимают компактную область вблизи границы Ca+Mg – 2(Na+K) (2-я группа). Соотношения щелочноземельных/щелочных металлов 1-й и 2-й групп имеют близкие значения, но для вод 2-й группы наблюдаются низкие концентрации алюминия и железа за счет более высоких значений рН. Как известно, концентрации алюминия и железа очень чувствительны к рН, воды с рН>2.5 резко обедняются этими компонентами. При разбавлении термальных вод холодными грунтовыми потоками, помимо снижения температуры, происходит увеличение рН. Разгрузка таких вод часто сопровождается интенсивным осаждением железосодержащих соединений формированием протяженных «плащей» красно-кирпичного цвета, что можно наблюдать в зонах разгрузки ASC-вод вблизи экструзивных куполов вулканов Синарка и Берга.

Источники острова Кунашир образуют третью группу вблизи угла Na+K. В их формировании принимают участие хлоридные натриевые воды более глубоких горизонтов гидротермальных систем вулканов Менделеева и Головнина [3, 4]. Вследствие этого происходит увеличение относительных концентраций натрия (+калий), которое мы наблюдаем на диаграмме.

### Изотопный состав воды

ASC-воды являются результатом конденсации магматических паров/растворения магматических газов (в основном  $SO_2$ , HC1 и НГ) в близповерхностных локальных водоносных горизонтах. Следовательно, их изотопный может отличаться от состава локальных метеорных вод. Нашими исследованиями [2, 5] показано, что в ультракислых водах Курильских островов наблюдается эффект смешения метеорных и магматических вод. Максимальные изотопные сдвиги были выявлены в термальных водах вулканов Синарка и Кунтоминтар (о. Шиашкотан). Вклад магматической компоненты в состав этих вод оценен в 15-20 %. Для остальных АЅС-вод, имеющих относительно низкие концентрации хлора (<1.5 г/л) изотопный состав близок к составу локальных метеорных вод.

### Заключение

В данных материалах представлены сведения о химическом составе 14 групп кислых сульфатно-хлоридных термальных (ASC) вод, разгружающихся на склонах активных вулканов Курильских островов. Несмотря на то, что основными процессами, определяющими их формирование, являются адсорбция магматических летучих веществ в неглубоких водоносных горизонтах в вулканических постройках (анионы) и вмешаюшей породы (катионы), локальные (морфологические. геологические, гидрологические и др.) условия накладывают свой отпечаток. По соотношениям макрокомпонентов ASC-воды Курильских островов условно можно разделить на три группы. В первую группу «классических» ультракислых SO<sub>4</sub>-Cl вод попадают источники вулканов Эбеко и Баранского. Во вторую, «разбавленную» холодными грунтовыми водами, входят термальные воды, разгружающиеся на склонах вулканов Синарка и Берга. В третью - «смешанную» с хлоридными натриевыми водами – попадают источники вулканов Менделеева и Головнина.

Работа выполнена при финансовой поддержке гранта РНФ № 20-17-00016.

## Список литературы

- 1. *Иванов В.В.* О происхождении и классификации современных гидротерм // Геохимия. 1960. № 5. С. 443-449.
- Калачева Е.Г., Таран Ю.А. Процессы, контролирующие изотопный состав (δD и δ¹8O) термальных вод Курильской островной дуги // Вулканология и сейсмология. 2019. № 4. С. 3-17. DOI: https://doi.org/10.31857/S0203-0306201943-17
- 3. *Калачева Е.Г., Таран Ю.А., Котенко Т.А. и др.* Гидротермальная система вулкана Менделеева, о. Кунашир, Курильские острова: геохимия и вынос магматических компонентов // Вулканология и сейсмология. 2017. № 5. С. 18-35. DOI: 10.7868/S0203030617050029
- 4. *Kalacheva E., Taran Y., Voloshina E., Inguaggiato S.* Hydrothermal system and acid lakes of Golovnin caldera, Kunashir, Kuril Islands: Geochemistry, solute fluxes and heat output // Journal of Volcanology and Geothermal Research. 2017. V. 346. P. 10-20. DOI: https://dx.doi.org/10.1016/j.jvolgeores.2017.06.001
- 5. *Taran Y. Kalacheva E.* Acid sulfate-chloride volcanic waters; Formation and potential for monitoring of volcanic activity // Journal of Volcanology and Geothermal Research. 2020. Vol. 405. Art. 107036. DOI: 10.1016/j.jvolgeores.2020.107036
- 6. Taran Y., Zelenski M. Systematics of water isotopic composition and chlorine content in arcvolcanic gases. In: The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas. Geological Society, London, Special Publications. 2014. V. 410. № 1. P. 410-432. DOI: 10.1144/SP410.5