УДК 004.932.2

Компьютерные методы и алгоритмы для анализа видеоизображений вулканов И.П. Урманов, С.П. Королев

Вычислительный центр ДВО РАН, Хабаровск, 680000; e-mail: urmanov@ccfebras.ru

Введение

Одним из эффективных средств наблюдения за вулканами являются системы видеонаблюдения. В их состав входят стационарные видеокамеры и программноаппаратные комплексы, обеспечивающие сбор, хранение и определенную обработку данных. Сотрудниками Института вулканологии и сейсмологии ДВО РАН и Вычислительного центра ДВО РАН создана система видеонаблюдения за вулканами Камчатки [2]. Большой архив изображений и высокая интенсивность его наполнения, требует разработки инструментов для решения задач по фильтрации неинформативных и испорченных изображений, а также выявления снимков с признаками активности вулканов. В рамках первого этапа работ авторами было разработано несколько алгоритмов, направленных на решение части рассматриваемых задач.

Алгоритм определения видимости вулкана на дневных снимках

Первый из них основан на анализе видимости вулкана на изображении [1]. Алгоритм реализован на основе анализа контуров [5] наблюдаемых объектов и частотных характеристик изображений. Анализ контуров представлен процедурами построения и сопоставления параметрических контуров вулкана. В данном случае видимость вулкана определяется путём сопоставления наиболее устойчивых контуров на эталонных изображениях с контурами анализируемого видеоснимка. Результатом сопоставления является оценка $\sigma \in [0..1]$. Примеры полученных оценок для трех снимков вулкана Ключевской представлены на рис. 1.

Рис. 1. Примеры оценки контуров на снимках с различной видимостью вулкана Ключевской: а – вулкан закрыт облаками ($\sigma = 0,26$), б – вулкан частично закрыт ($\sigma = 0,55$), в – вулкан ясно виден ($\sigma = 0,69$).

В случае, когда оценка σ находится в Δ окрестности порога принятия решения τ о непригодности снимка для исследований, результат алгоритма анализа границ σ корректируется с помощью оценки частотной характеристики изображения $\rho \in [0..1]$, которая представлена вектором вклада октав частот в формирование яркостной компоненты изображения. Для оценки видимости вулкана производится сравнение эталонной частотной характеристикой с характеристикой анализируемого изображения. На рис. 2 представлены примеры оценки частотных характеристик для снимков вулкана Ключевской, сделанных при разных погодных условиях.

Рис. 2. Примеры оценки частотных характеристик для снимков с различной видимостью вулкана Ключевской:а – вулкан закрыт облаками ($\sigma = 0,31$), б – вулкан частично закрыт ($\sigma = 0,58$), в – вулкан ясно виден ($\sigma = 0,71$).

Итоговая оценка видимости определяется по формуле $\alpha = \sigma f(\sigma) + \rho(1 - f(\sigma)),$

где

$$f(\sigma) = min(1, (\sigma - \tau)^2 / \Delta^2)$$

Рассматриваемый алгоритм предназначен для работы с изображениями, сделанными в дневное время.

Алгоритм обнаружения термальных аномалий

Для фотоснимков, полученных в ночное время с применением камер, снимающих в видимом и ближнем инфракрасном диапазоне, был реализован отдельный алгоритм. Суть его работы заключается в поиске термальных аномалий на снимках, характеризующих активность вулкана. Центры аномалий определяются с помощью многомасштабного DoG (Difference of Gaussian) детектора, при этом на DoG слоях выбираются только максимумы. Каждому центру аномалий ставится в соответствие вектор признаков. С помощью классификатора машина опорных векторов (SVM) определяется принадлежность аномалии к классу термальных аномалий и не аномалий. В качестве признаков рассматриваются: значение DoG функции в центре, вытянутость аномалии, отношение периметра к минимально возможному периметру (сложность границы), асимметричность значений на краях, отношение перепада яркости центр-основание к значению яркости в центре и само значение яркости в центре. Примеры найденных термальных аномалий на снимках представлены на рис. 3.

Заключение

В рамках проведенного исследования были разработаны алгоритмы для анализа изображений вулканов. Предложенные методы и подходы позволяют эффективно решать задачи оценки видимости объекта и детектирования яркостных аномалий. Полученные результаты могут быть использованы при создании систем оперативного мониторинга активности вулканов для обеспечения безопасности населения.

Работа проведена при частичной поддержке гранта ДВО РАН № 18-5-091. При обработке данных были использованы ресурсы ЦКП "Центр данных ДВО РАН"[4].

Список литературы

- 1. *KamaevA.N., Urmanov I.P., Sorokin A.A. et al.* Images analysis for automatic volcano visibility estimation // Computer Optics. 2018. Vol. 42(1). P. 128-140. DOI: 10.18287/2412-6179-2018-42-1-128-140.
- Sorokin A.A., Korolev S.P., Romanova I.M. et al. The Kamchatka Volcano Video Monitoring System // Proceedings of 2016 6th International Workshop on Computer Science and Engineering; WCSE 2016. Tokyo, Japan. June 17-19, 2016. P. 734-737.
- 3. Sorokin A.A., Korolev S.P., Urmanov I.P., et al. Software Platform for Observation Networks Instrumental Data Far Eastern Branch of the Russian Academy of Sciences // Proceedings of International Conference on Computer Science and Environmental Engineering, Beijing. May 17-18, 2015. P. 589-594.
- 4. *Sorokin A.A., Makogonov S.I., Korolev S.P.* The Information Infrastructure for Collective Scientific Work in the Far East of Russia // Scientific and Technical Information Processing. 2017. Vol. 44. No. 4. P. 302-304. DOI: 10.3103/S0147688217040153
- Urmanov I., Kamaev A., Sorokin A. Computer methods of image processing of volcanoes // Proceedings of the IV International research conference «Information technologies in Science, Management, Social sphere and Medicine» (ITSMSSM 2017). 5-8 December 2017. Advances in Computer Science Research (ACSR). 2017. Vol. 72. Pp. 371–374. DOI: 10.2991/itsmssm-17.2017.77