Минералорудообразование в основании толщи глин Восточно-Паужетского термального поля Паужетской гидротермальной системы (Южная Камчатка) С.Н. Рычагов¹, Т.М. Философова¹, М.С. Чернов², , Е.С. Житова¹, О.В. Кравченко¹, А.В. Сергеева¹

¹Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский; 683006; e-mail: rychsn@kscnet.ru

В основании толщи гидротермальных глин Восточно-Паужетского термального поля под однородным слоем пластичных глин, являющихся тепловым экраном и теплоизолирующим слоем, выделена минеральная рудная зона. Зона образована вследствие разгрузки щелочных металлоносных термальных вод, поступающих из нижних горизонтов Паужетской гидротермальной системы или из недр Камбального вулканического хребта.

Введение

Паужетской гидротермальной системе и одноименному геотермальному месторождению посвящено большое количество исследований [1, 2, 5]. Но остаются открытыми многие вопросы. Решение проблемы о влиянии глубинного металлоносного флюида на зону гипергенеза гидротермальной системы возможно с помощью комплексного изучения термальных полей и распространенной на их поверхности толщи гидротермальных глин [4]. Так, при изучении гидротермальных глин Восточно-Паужетского термального поля (т/п) были выделены две зоны с минеральными рудными ассоциациями [3]. Зоны приурочены к «синим глинам» (насыщенным другими сульфидами) и расположены под горизонтом тугопластичных глин. Горизонт распространен на площади всего т/п и служит водоупором и тепловым изолятором, а к «синим глинам» приурочен комплексный геохимический барьер [4]. Эти данные определили повышенный интерес авторского коллектива к дальнейшему изучению гидротермальных глин Восточно-Паужетского т/п с помощью проходки скважин колонкового бурения. В западной части поля скважиной вскрыта рудная зона сложного химического и минерального составов. Характеристике этой зоны посвящена настоящая работа.

Литологический разрез толщи гидротермальных глин

Восточно-Паужетское т/п расположено на восточном фланге гидротермальной системы и приурочено к приподнятому тектоно-магматическому блоку [5]. Его описание подробно сделано ранее, поэтому обратимся к характеристике толщи глин. На т/п пройдено 13 скважин колонкового бурения (рис. 1) глубиной от 2,8 до 8,9 м,

Рис. 1. Восточно-Паужетское τ/π : а — общий вид и расположение скважин, б — план с местоположением скважин и их номерами.

вскрыты все горизонты и слои интенсивно аргиллизированных пород. Рудная зона прослежена тремя скважинами и двумя шурфами (шурфы расположены в точке ВПП-

²Геологический факультет МГУ имени М.В. Ломоносова

1/15). Разрез в точке бурения ВПП-2/16 представлен следующими основными горизонтами (сверху — вниз): 1) сернокислотного выщелачивания; 2) мягкотугопластичными глинами; 3) «синими глинами»; 4) пиритизированными интенсивно аргиллизированными брекчиевидными андезитами. В «синих глинах» выделяется пологопадающая зона мощностью 0,6 м с резкими границами. Основная матрица отложений этой зоны сложена глинисто-карбонатно-сульфидным материалом, включающим большое количество (до 1-2 об.%) агрегатов округлой формы (глобулей).

Строение и состав глобулей

Глобули отличаются размерами и формой в трех условно выделенных слоях (рис. 2). В верхнем слое глобули чаще всего уплощенные и образуют сростки-агрегаты размером до 25 мм. В среднем – отмечаются более округлые формы (в т.ч. отдельные «шарики») и соответствующие агрегаты размером от 2-3 до 10 мм. В нижнем – существенно более мелкие округлые, комковатые, сферические глобули. Агрегаты

Рис. 2. Глобули из верхнего (А), среднего (Б) и нижнего (В) слоев рудной зоны.

плотные, массивные. В их состав входят: карбонаты, глинистые минералы, пирит, кварц (и другие минералы кремнезема), оксиды железа (магнетит, титаномагнетит) и титана (ильменит), пластинчатые черные полупрозрачные на тонких сколах минералы, и др. Глобули отличаются от выделенных ранее (в разрезе ВПП-1/15 [3]) более темным серо-зеленым цветом, что свидетельствует в пользу значительного разнообразия их химического и минерального составов (присутствия «цветных минералов», что и подтверждается на основании электронно-микроскопических исследований, см. ниже). Кроме того, визуально отмечается высокое содержание пирита в составе агрегатов — до 25 об.% и наблюдается рост концентраций FeS_2 к нижнему слою зоны. По данным ИКспектроскопии к основным (по объемному содержанию) минералам кроме пирита относятся: магнезиальный кальцит и смектит; каолинит - в подчиненном положении. Глобули характеризуются разнообразным микростроением и составом (рис. 3).

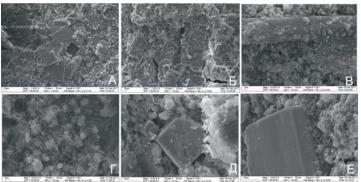


Рис. 3. Строение глобулей по данным сканирующей электронной микроскопии (СЭМ LEO 1450VP, геологический факультет МГУ). А – агрегаты кристаллов пирита в карбонатноглинистой матрице, внизу – крупный кристалл ильменита; Б – основная матрица глобулей, сложенная карбонатами, смектитом и пиритом; В – кристалл апатита и глобулярная микроструктура основной массы; Г – микрокристаллы пирита в тонкодисперсной матрице смектита; Д – кристалл пирита с минеральными образованиями на его поверхности; Е - микрослои на поверхности кристалла пирита.

Многие участки представлены сростками кристаллов пирита идеально правильной кубической формы, образующими каркае матрицы (рис. 3A). Матрица сложена карбонатами (слоистые микроструктуры на рис. 3Б) и смектитом, образующим ажурные и глобулярные формы. Выделяются хорошо окристаллизованные удлиненные кристаллы фосфатов (вероятно, апатита) в ассоциации с смектитом и карбонатами (рис. 3B). Характерно также высокое содержание других фосфатов, а также микрокристаллов пирита в массе глинистых минералов (рис. 3Г). Выявляется микроглобулярная структура поверхности кристаллов пирита за счет образования других минеральных фаз (слоистые силикаты ?, рис. 3Д), а также слоистость поверхности пирита (рис. 3E).

Микрозондовые исследования в ИВиС ДВО РАН выявили еще большее разнообразие структур и состава глобулей. Отдельные частицы имеют брекчиевидную структуру основной массы (рис. 4A). Цемент представлен карбонатами (или алюмосиликатами); обломки-фрагменты - глинистыми минералами, кварцем, опалом,

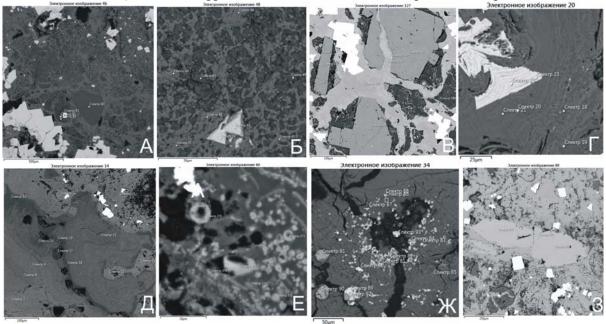


Рис. 4. Микростроение глобулей по данным микрозондовых исследований в ИВиС ДВО РАН.

оксидами железа, фосфатами, и др. Наиболее типична относительно однородная структура глобулей, определяемая преобладанием в основной массе карбонатов, включающих кристаллы других минералов или поры, выполненные смектитом, фосфатами, оксидами и др. (рис. 4Б). Развита система микротрещин в кристаллах и основной матрице (рис. 4В). Характерна также зональность в пирите, обусловленная минеральными фазами титана; зональность основной массы определяется распределением фосфатов (водных фосфатов Al, Fe, Ca, Na и др.) (рис. 4Г); зональность в карбонатах – повышенным содержанием Мп (до 12-15 %) в отдельных микрослоях (рис. 4Д). Фосфаты образуют микро-наноглобулярные структуры (рис. 4Е). Обнаружена редкоземельная минерализация — в виде мелких (до 5 мкм) кристаллов, концентрирующихся вокруг пор и микротрещин (рис. 4Ж). Подтверждается наличие крупных кристаллов (до 1.5 – 2.0 мм) амфибола (рис. 43) – пластинчатого черного минерала, отмеченного выше. Амфибол диагностирован как эденит на основании порошковой рентгеновской дифракции и электронно-зондового микроанализа, выполненных в ресурсных центрах СПбГУ. Минеральный состав приведен в таблице.

Таблица. Минеральный состав глобулей рудной зоны Восточно-Паужетского т/п по данным микрозондовых исследований (ИВиС ДВО РАН), а также рентгеноструктурных исследований (СПбГУ) и ИК-спектроскопии (ИВиС)

№	Название	Состав (общая формула)
п.п.		
1	Кальцит	CaCO ₃
2	Магнезиальный	Ca(Mg)CO ₃
	кальцит	
3	Манганокальцит	(Ca,Mn)CO ₃
4	Смектит	$Na(H_2O)_4(Al,Mg)_2[Si_4O_{10}](OH)_2$
5	Каолинит	$Al_2[Si_2O_5](OH)_4$
6	Кварц, опал	SiO_2
7	Эпидот	$Ca_2FeAl_2[SiO_4][Si_2O_7]O(OH)$
8	Калиевый полевой	$K[AlSi_3O_8]$
	шпат	
9	Амфибол (эденит)	$NaCa_2Mg_5[AlSi_7O_{22}](OH,F)_2$
		$(Na_{0.46}K_{0.04})(Ca_{1.71}Mn_{0.05})(Mg_{2.99}Fe_{1.77}Ti_{0.21})(Si_{6.74}Al_{1.26})O_{21.1}(OH)_{2.9}$
10	Апатит	$Ca_2Ca_3[PO_4]_3(F,OH)_2$
11	Пирит	FeS ₂
12	Сфалерит	ZnS
13	Халькопирит	CuFeS ₂
14	Ильменит	FeTiO ₃
15	Рутил	TiO ₂
16	Титанит	CaTi[SiO ₄]
17	Магнетит	$FeFe_2O_4(Fe_2TiO_4)$
	(титаномагнетит)	
18	Циркон	Zr[SiO ₄]
19	Водные фосфаты (наиболее вероятны фосфаты Al, Na, Ca, Fe, Mn: варисцит,	
	метаварисцит, минералы группы виксита, и др.)	

Заключение

В основании толщи глин Восточно-Паужетского термального поля выделена пологопадающая рудная зона сложного состава. Зона образована в результате разгрузки щелочных металлоносных термальных вод. Движение растворов из глубины связано с магматическими телами, а в приповерхностных горизонтах термального поля приурочено к апикальным частям субинтрузивного тела среднего-основного состава.

Работа выполнена при финансовой поддержке РФФИ (16-05-00007а) и ДВО РАН (15-I-2-065). Исследования проведены с использованием оборудования, полученного в рамках реализации Программы развития МГУ имени М.В. Ломоносова.

Список литературы

- 1. Белоусов В.И. Геология геотермальных полей. М.: Наука, 1978. 176 с.
- 2. Паужетские горячие воды на Камчатке. М.: Наука, 1965. 208 с
- 3. *Рычагов С.Н., Сергеева А.В., Чернов М.С., Философова Т.М.* Глобули различного состава в толще гидротермальных глин Восточно-Паужетского термального поля (Южная Камчатка) // Материалы XVIII ежегодной научной конференции, посвященной Дню вулканолога, 30-31 марта 2015, г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2015. С. 282-285.
- 4. *Рычагов С.Н., Соколов В.Н., Чернов М.С.* Гидротермальные глины геотермальных полей Южной Камчатки: новый подход и результаты исследований // Геохимия. 2012. № 4. С. 378-392.
- 5. Структура гидротермальной системы. М.: Наука, 1993. 298 с.