

УДК 550.34:551.21

В. А. Салтыков

Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский e-mail: salt@emsd.ru

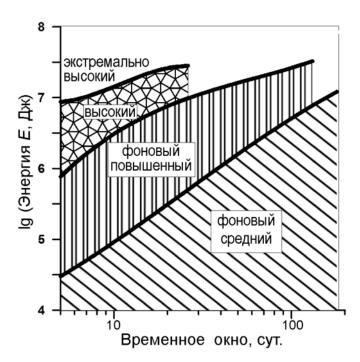
Вероятностный прогноз извержений вулкана Безымянный на основе статистической оценки уровня сейсмичности СОУС'09

В рамках разработки технологии краткосрочного прогноза извержений вулканов по результатам ретроспективного анализа сейсмической активности в окрестности вулкана Безымянный (1999–2014 гг.) разработана прогностическая методика, основанная на мониторинге расчётного значения функции-индикатора, зависящей от уровня сейсмичности по шкале СОУС'09. Предложен формализованный предвестник извержения. Методика включает параметр вероятности реализации прогноза. Создана номограмма вероятности извержения в зависимости от времени прогноза и значения прогностического параметра. Формализована процедура снятия тревоги.

Введение

Для создания научно-методической основы технологий прогноза опасных геодинамических явлений (землетрясений, извержений вулканов и пр.) необходимы методические разработки по формализации предвестников, оценке их прогностической эффективности и создание алгоритмов вероятностной оценки возникновения ожидаемого события. В данной работе рассмотрен формализованный подход вероятностного прогноза на основе применения статистической оценки уровня сейсмичности СО-УС'09 [3] и ряда вспомогательных функций, характеризующих предвестниковую ситуацию. Возможности этой методики проиллюстрированы на примере сейсмических активизаций перед извержениями вулкана Безымянный (Ключевская группа вулканов, Камчатка).

В последние десятилетия на вулкане Безымянный происходит в среднем 1–2 кратковременных, но сильных эксплозивно-эффузивных извержения в год. Так с 1977 г. по настоящее время (май 2015 г.) зафиксировано 42 таких извержения [5]. Для вулкана Безымянный характерна слабая мелкофокусная сейсмичность, которая, в основном, связана непосредственно с извержениями или предшествует им. Наиболее надежный каталог землетрясений для этого вулкана имеется с 1999 г.


Для описания сейсмичности различных пространственно-временных областей в Геофизической службе РАН рекомендовано применять шкалу уровня сейсмичности СОУС'09 [3], которая в качестве базового параметра использует статистическую функцию распределения F выделившейся сейсмической энергии E в заданном пространственно-временном интервале. Шкала включает основные уровни для качественного описания со-

стояния сейсмичности: экстремально высокий, высокий, фоновый, низкий и экстремально низкий. Исходя из такого разбиения, 95% времени сейсмичность пребывает на фоновом уровне (диапазон значений функции распределения F=0.025-0.975), по 2% времени приходится на высокий и низкий (F=0.975-0.995 и F=0.005-0.025, соответственно) и по 0.5% — на экстремально высокий и низкий уровни (F=0.995-1.0 и F=0.0-0.005, соответственно). Для повышения детальности фоновый уровень разделяется на три подуровня: фоновый повышенный (F=0.85-0.975), фоновый средний (F=0.15-0.85), фоновый пониженный (F=0.025-0.15).

Вариации уровня сейсмичности перед извержениями вулкана Безымянный

Для исследования сейсмических активизаций перед извержениями вулкана Безымянный использован каталог Ключевской группы вулканов с 1999 по 2014 гг., полученный Камчатской региональной сетью сейсмических станций. Для построения оценок уровня сейсмичности из каталога были выбраны землетрясения, зафиксированные в радиусе 6 км от вершины вулкана Безымянный. Примерно 98% сейсмических событий приходится на диапазон глубин до 5 км. Анализируемый массив данных имеет следующие характеристики: уровень надёжной регистрации $K_S=4.0$; максимальный класс землетрясений $K_S=8.8$, число землетрясений представительной энергии -1213.

Для оценки состояния сейсмичности исследуемого сейсмоактивного объёма построены эмпирические функции распределения выделившейся сейсмической энергии в различных временных окнах и номограмма СОУС'09, представленная на рис. 1 [2]. Низкий, экстремально низкий и фоновый пониженный уровни сейсмичности для рассматриваемого

Рис. 1. Номограмма СОУС'09 для вулкана Безымянный. На номограмме выделены зоны, соответствующие различным уровням сейсмичности.

массива данных статистически не определены. Фоновый средний уровень имеет смысл рассматривать во временных окнах от 5 суток. Эти ограничения статистических оценок связаны с тем, что имеются продолжительные временные интервалы, в которых не были зарегистрированы землетрясения представительного класса.

В 1999–2014 гг. произошло 21 извержение вулкана Безымянный. В двух случаях (11 мая 2007 г. г. и 31 мая 2010 г. г.) сейсмический мониторинг был затруднён из-за высокого уровня вулканического дрожания, связанного с активностью Ключевского вулкана, поэтому только перед 19 извержениями имеется каталог, пригодный для статистического анализа. Выявлены статистически значимые переходы сейсмичности с фонового среднего на фоновый повышенный, а затем на высокий (экстремально высокий) уровень перед большинством извержений вулкана Безымянного в 2000–2012 гг.: лишь перед 3 из 19 извержений (14 октября 2007 г., 13 апреля 2011 г., 8 марта 2012 г.) не наблюдалось уверенных вариаций уровня сейсмичности.

Формализованный предвестник извержения — функция-индикатор

По данным об уровне сейсмичности при 19 извержениях 1999–2014 гг. был построен осредненный уровень сейсмичности в окрестности начала извержения (рис. 2):

$$SS(\Delta t) = \sum_{i=1}^{n} S(t_0^i + \Delta t)/n,$$

где Δt — время относительно начала i-го извержения t_0^i . Используемая здесь функция $S(\dots)$ есть пересчитанная функция распределения F в линейный по отношению к шкале СОУС'09 масштаб:

$$F=0.5$$
 $S=0$ $F=0.85$ $S=1$ — граница фонового среднего и фонового повышенного уровня, $F=0.975$ $S=2$ — граница фонового повышенного и высокого уровня, $F=0.995$ $S=3$ — граница высокого и экстремально высокого уровня, $F=1$ $S=4$.

В контексте решаемой задачи — прогноз извержений и определение предвестника, интерес для нас представляет участок функции S, ограниченный слева $\Delta t = -16$ сут. (время перехода с фонового среднего на фоновый повышенный уровень) и справа $\Delta t = -2$ сут. (очевидное требование $\Delta t = -1$ сут. усугубляется задержкой в 1 сут. в обработке текущих землетрясений и составлении оперативного каталога). Аппроксимацию участка функции S в диапазоне $\Delta t = -16 \div -2$ сут. гиперболой $S_{\rm hyp}$ предлагается рассматривать как эталон поведения уровня сейсмичности перед извержением (рис. 3).

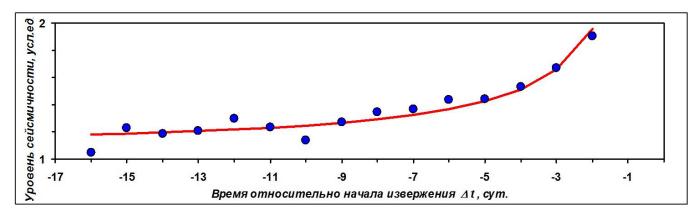
Для выявления временных участков подготовки извержения предлагается использовать следующую функцию-индикатор:

$$U(t) = \frac{1}{15} \sum_{k=-16}^{-2} S(t+k+2)SS(k),$$

которая представляет собой сглаживание уровня сейсмичности S(t) в скользящем временном окне шириной 15 суток с использованием весовой функции $SS(\Delta t)$. Эта процедура похожа на расчёт корреляции, но в отличие от неё не проводится предварительное центрирование рядов S и SS. Такое преобразование позволяет получить ряды индикатора U, характеризующие в определенном смысле сходство поведения уровня сейсмичности S и предполагаемого предвестника SS. Примеры предвестникового увеличения функции-индикатора U перед 19 извержениями 1999–2012 гг. приведено на рис. 4.

Для практического использования данного подхода к прогнозированию извержений вулкана Безымянный необходимо получить ответы на следующие важнейшие вопросы:

- 1. Что является критерием для подачи тревоги (прогнозного заключения)?
 - 2. Что является критерием для снятия тревоги?
 - 3. Какая вероятность реализации прогноза?
 - 4. Какая вероятность пропуска извержения?
- 5. Каковы достоверность, надёжность и эффективность предлагаемого предвестника?


Критерии подачи тревоги

Предлагается использовать пороговый критерий: при превышении индикатором U порога u ситуация рассматривается как предвестниковая. Исходя

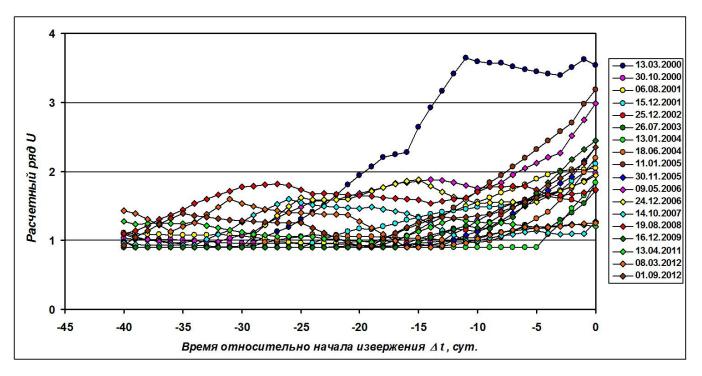
В. А. Салтыков

Рис. 2. Осреднённое по 19 извержениям вулкана Безымянный 1999–2014 гг. поведение уровня сейсмичности по шкале СОУС'09 во временной окрестности извержения.

Рис. 3. Участок графика (рис. 2), принятый в качестве осредненного предвестника извержения вулкана Безымянный, аппроксимация гиперболой.

из поведения индикатора U, ниже будет рассмотрен набор пороговых значений u_i от 1 до 2 с шагом 0,1. Первичная обработка включила определение временных интервалов в течение 1999–2014 гг., когда $U\geqslant u_i$. Именно эти временные интервалы образуют время тревоги. Возможны три варианта взаиморасположения извержения и тревожного интервала:

- 1. Если извержение попадает в интервал, когда $U\geqslant u_i$, то оно считается имеющим предвестник. Важным нюансом здесь является отмена тревоги произошедшим извержением, то есть временной интервал непосредственно после извержения не включается во время тревоги, даже если $U\geqslant u_i$.
- 2. Если перед извержением $U < u_i$, то такая ситуация квалифицируется как «пропуск цели», то есть извержение не имеет идентифицированного по рассматриваемой методике предвестника и не может быть предсказано.
- 3. Тревожный интервал рассматривается как «ложная тревога», если в его пределах не произошло извержение.


В табл. 1 приведены данные о заблаговременности появления предвестника перед всеми извержениями вулкана Безымянный в 1999-2014 гг. в зависимости от величины использованного порогового значения u.

Оценка прогностических свойств предвестника

 $Ha\partial\ddot{e}ж$ ность предвестника R определяется как отношение числа извержений N_+ , для которых был выделен предвестник, к числу всех извержений N: $R=N_+/N$.

Меняя порог u, используемый при выявлении предвестника, и посчитав для него соответствующие N_+ (Таблица 2), была получена зависимость надёжности R от порога u. Согласно расчётам надёжность предвестника существенно выше для низких пороговых значений u, чем для более высоких. Практически это означает, что перед большинством (95%) извержений наблюдается превышение рядом U порогового значения u=1,0, но превышение больших порогов становится все более редким с их увеличением, что с неизбежностью ведёт к увеличению пропуска цели: например, только перед одним из трёх извержений U достигает аномального значения 2,0.

Достоверность предвестника V определена как отношение числа предвестниковых аномалий $N(A_E)$ (то есть, в нашем случае, число превышений U порогового значения ui, сопровождавшихся извержением) к общему числу выделенных аномалий N(A): $V = N(A_E)/N(A)$. Согласно табл. 2 2/3 наиболее

Рис. 4. Примеры временного хода функции-индикатора U перед извержениями вулкана Безымянный $1999-2014~\mathrm{rr}.$

ярких (с превышением U порога u=2,0) аномалий завершаются извержением и могут рассматриваться как реализовавшийся предвестник. При снижении порога достоверность уменьшается, и лишь каждая третья аномалия завершается извержением при пороге u=1,0.

Эффективность по методике A.A. Гусева J_G [1] определяется для каждого конкретного порогового значения u по формуле

$$J_G = \frac{N_+}{N \cdot \frac{T_{\text{alarm}}}{T}},$$

где T — общее время мониторинга сейсмической обстановки методике; N_+ — количество случаев успешного прогноза за время T; N — общее количество извержений, произошедших за время T; $T_{\rm alarm}$ — общее время тревоги (суммарная длительность всех промежутков времени, в которых действовал прогноз по оцениваемому методу в течение общего времени мониторинга).

Знаменатель дроби отражает среднее число возникновения извержений за время $T_{\rm alarm}$ в случае отсутствия связи прогнозов с извержениями. Соответственно, эффективность J_G показывает, во сколько раз количество спрогнозированных извержений превышает число попавших в «тревожное» время случайным образом. При случайном угадывании эффективность J_G равна 1. В нашем исследовании эффективность J_G меняется на порядок при изменении порога u от 1,0 до 2,0 (таблица 2).

Эффективность по методике Г. М. Молчана [6]. Другим способом оценки эффективности является построение диаграммы Молчана для различных

величин порога u. На диаграмме Молчана [6] абсцисса точки определяется как мера тревоги $\tau = \frac{T_{\rm alarm}}{T}$, а ордината — как доля пропусков цели v: $v = 1 - \frac{N_+}{N}$. Диагональ диаграммы Молчана $\tau + v = 1$, соединяющая точки (0,1) (точка «оптимиста») и (1,0) (точка «пессимиста») соответствует случайному прогнозу. Для этой диагонали можно построить доверительный интервал с заданной значимостью α . В нашем случае представляет интерес только нижняя ветвь этого доверительного интервала. Для всех рассматриваемых случаев экспериментальные точки (τ,v) лежат ниже этой ветви, что интерпретируется как высокая степень надёжности выявленной связи аномалий (превышение индикатором U порогового значения u) с происходящими извержениями.

Эффективность предвестника J_M определяется как $J_M=1$ – $\rm v$ – $\rm \tau$. Для случайного прогноза $J_M=0$, а для идеального (без пропуска цели и с нулевым временем тревоги) — $J_M=1$. Для рассматриваемых вариантов пороговых значений u в диапазоне 1,0...1,5 эффективность существенно не меняется. Но при дальнейшем увеличении порога u до 2,0, она уменьшается вдвое, оставаясь при этом статистически высоко значимой.

Оценка вероятности прогноза

Для оценки вероятности прогноза предлагается следующий алгоритм:

1. Исходя из пуассоновского характера распределения извержений оценивается вероятность хотя бы одного извержения в течение заданного времени t: $p(n>0)=1-e^{-\lambda t}$, где λ — интенсивность пуассоновского потока. Предварительно делается

В.А. Салтыков

Таблица 1. Заблаговременность проявления предвестника перед извержениями вулкана Безымянный в 1999–2014 гг.

	Дата извержения	Заблаговременность Δt выхода сейсмичности на заданный уровень u , сут.							
ใ⊿กั		u = 1,0	u = 1,2	u = 1.4	u = 1.6	u = 1.8	u = 2,0		
1	24.02.1999	7	5	3					
2	13.03.2000	28	25	24	22	21	19		
3	30.10.2000	12	10	8	5	1			
4	06.08.2001	18	15	12	9	6	3		
5	15.12.2001	23	18	13	5	2	0		
6	25.12.2002	15	9	7	0				
7	26.06.2003	12	3	2	0	0			
8	13.01.2004	4	3	2	1	0			
9	18.06.2004	8	6	4	2	1	1		
10	11.01.2005	17	14	12	10	9	7		
11	30.11.2005	12	8	6	5	3	1		
12	09.05.2006	31	28	26	21	8	6		
13	24.12.2006	29	28	26	4	1			
14	11.05.2007	17							
15	14.10.2007	9	0						
16	19.08.2008	41	38	35	11				
17	16.12.2009	14	8	6	5	4	2		
18	31.05.2010	Отсутствие предвестника в условиях сильного дрожания							
19	13.04.2011	16	4						
20	08.03.2012	10	3						
21	01.09.2012	18	15	8	5	3	2		
Среднее арифметическое		17	13	12	7	5	5		
Стандартное отклонение		± 9	± 11	± 10	± 7	± 6	± 6		
	Медиана		9	8	5	3	2		

Примечания

проверка на соответствие распределения извержений распределению Пуассона. Для рассматриваемых выше данных была сделана проверка экспоненциальности распределения временных интервалов между землетрясениями на основании которой гипотеза о пуассоновском распределении извержений не отвергается.

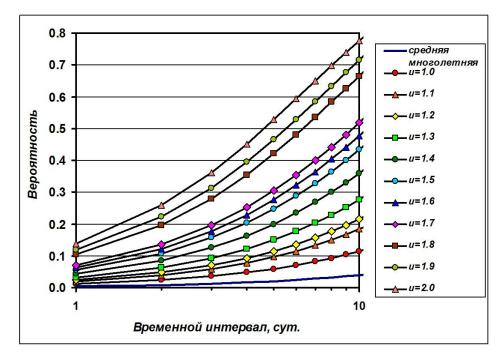
2. Исходя из смысла параметра эффективности J_G по методике Гусева, ожидаемая вероятность p_e появления хотя бы одного извержения за время t после идентификации предвестника будет равна $p_e(n>0)=1-e^{-J_G\lambda t}$.

Номограмма вероятностей реализации прогноза землетрясением для предвестника "Превышение величиной U заданного порогового значения u для

различных времени тревоги и пороговых значений u представлена на рис. 5.

3. Учитывая, что при ретроспективном анализе обнаружено извержение, которое не имело рассматриваемого предвестника — («пропуск цели»), представляется возможным оценить вероятность извержения в отсутствие предвестника. Предлагается использовать распределение Пуассона (рис. 6), основываясь на том, что за известное время мониторинга сейсмичности в отсутствие предвестника произошло известное число извержений (в нашем случае 1 извержение за ≈ 4000 суток).

Таким образом, методика включает параметр вероятности реализации прогноза. Создана номограм-


¹⁾ Если в таблице указано $\Delta t = 0$, это означает выход индикатора U на пороговый уровень непосредственно в день извержения, то есть формально не является предвестником и не может использоваться при прогнозировании.

²⁾ Извержение 31 05 2010 г. произошло на фоне сильного вулканического дрожания близрасположенного вулкана Ключевской, что сделало невозможным проведение стандартной обработки локальных землетрясений. С точки зрения прогнозирования необнаружение предвестника по такой причине должно рассматриваться как "пропуск цели".

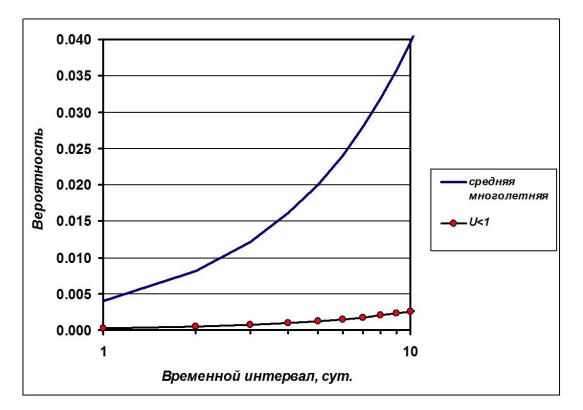
Порог	Время	Число успешных	Надежность	Достоверность	Эффективность	Эффективность
u_i	тревоги $T_{\rm alarm}, { m cyr}.$	прогнозов N_{+}	предвестника ${\cal R}$	предвестника ${\cal V}$	по Гусеву $J_G \ [1]$	по Молчану $J_M [4]$
1,0	1764	20	0,95	0,32	3	0,65
1,1	992	18	0,86	0,30	5	0,68
1,2	778	18	0,86	0,33	6	0,72
1,3	548	16	0,76	0,34	8	0,67
1,4	405	16	0,76	0,44	11	0,69
1,5	304	16	0,76	0,59	14	0,71
1,6	228	13	0,62	0,48	16	0,58
1,7	169	11	0,52	0,42	18	0,49
1,8	112	11	0,52	0,55	27	0,50
1,9	79	9	0,43	0,60	31	0,41
2,0	58	8	0,38	0,58	37	0,37

Таблица 2. Параметры прогностической методики.

Примечание: Суммарное время мониторинга — T=5755 суток (1.01.1999 — 4.10.2014). Общее число извержений — N=21. Время тревоги T_{alarm} рассчитывалось для каждой аномалии (превышение индикатором U порога u) как временной интервал между сигналом тревоги (начало аномалии) и моментом извержения (для реализовавшегося предвестника) или снятием тревоги (конец аномалии).

Рис. 5. Номограмма вероятности реализации прогноза в зависимости от длительности тревоги при различных пороговых значениях функции-индикатора.

ма вероятности в зависимости от времени прогноза и значения прогностического параметра.


Характеристика прогностической методики

Ниже приводится характеристика разработанной методики прогнозирования в терминах общей прогностики [5]. Методика является поисковой и направлена на определение возможного положения явления (извержения вулкана Безымянный) в будущем. Разрабатываемый прогноз рассматривается как вероятностный. Объектом прогнозирова-

ния является извержение вулкана Безымянный. При прогнозировании применяется метод экстраполяции: распространение выявленных закономерностей развития объекта прогнозирования на будущее в предположении, что выявленная закономерность, выступающая в качестве базы прогнозирования, сохраняется и в дальнейшем.

1. Предвестник: превышение значением ряда U, рассчитанного на основе данных об уровне сейсмичности вулкана Безымянный (в радиусе 6 км от вершины) по шкале СОУС'09, определённого

Cалтыков B, A. 205

Рис. 6. Номограмма вероятности извержения в отсутствие предвестника. Для сравнения приведена среднемноголетняя вероятность извержения.

порогового уровня u в отсутствие извержения. Продолжающееся во время извержения превышение U над u не является предвестником;

- 2. Момент подачи тревоги (прогнозного заключения): момент выявления предвестника;
- 3. Параметры ожидаемого события: прогнозируются извержения вулкана Безымянный;
- 4. Период упреждения прогноза (промежуток времени, на который разрабатывается прогноз): прогноз дается первоначально на 2 недели, с возможной пролонгацией;
- 5. Снятие тревоги при отсутствии ожидаемого извержения (ложная тревога): при снижении текущего значения U ниже пороговой величины u;
- 6. Успешный (оправдавшийся) прогноз: извержение вулкана Безымянный во временном интервале, объявленном тревогой;
- 7. Снятие тревоги после оправдавшегося прогноза: произошедшее извержение отменяет состояние тревоги (снимает прогноз досрочно) независимо от уровня сейсмичности;
- 8. Вероятность извержения: прогноз носит вероятностный характер, определяемый номограммой в условиях наличия/отсутствия предвестника.

Заключение

По результатам ретроспективного анализа мелкофокусной сейсмичности в окрестности вулкана Безымянный (1999–2014 гг.) проведена разработка прогностической методики его извержений, основанной на мониторинге функции-индикатора, кото-

рая отражает значения уровня сейсмичности по шкале СОУС'09.

Разработка включает следующие аспекты:

- формализацию предвестника извержения;
- введение параметра вероятности реализации прогноза. Создана номограмма вероятности в зависимости от времени прогноза и значения прогностического параметра;
- формализацию процедуры снятия состояния тревоги.

На основе данных о сейсмичности вулкана Безымянный перед 21 извержением 1999-2014 гг. оценена надёжность и достоверность предвестника. Надежность составляет 0.38-0.95 (т. е. от 38% до 95% извержений в зависимости от задаваемого порогового значения имели предвестник), а достоверность -0.3-0.6 (т. е. реализованы от 30% до 60% выявленных предвестников также в зависимости от используемого порога). Показано, что надёжность предвестника уменьшается с увеличением пороговых значений функции-индикатора, а его достоверность — растёт.

Проведена оценка эффективности предвестника двумя способами. Показано, что результаты применения прогностической методики статистически значимо отличаются от случайного угадывания и дают по сравнению с ним выигрыш в 3–30 раз.

Представленные оценки получены по данным каталога землетрясений Камчатского филиала Геофизической службы РАН за 1999–2014 гг.

Список литературы

- 1. Гусев А.А. Прогноз землетрясений по статистике сейсмичности // Сейсмичность и сейсмический прогноз, свойства верхней мантии и их связь с вулканизмом на Камчатке. Новосибирск: Наука, 1974. С. 109–119.
- 2. *Кугаенко Ю. А., Воропаев П.В.* Вариации статистической оценки уровня сейсмичности по шкале СОУС'09: вулкан Безымянный // Вестник КРАУНЦ. Науки о Земле. 2015. № 2. Вып. 25. С. 231–240.
- 3. *Салтыков В.А.* Статистическая оценка уровня сейсмичности: методика и результаты применения на при-

- мере Камчатки // Вулканология и сейсмология. 2011. \mathbb{N}_2 2. С. 53–59.
- 4. Прогностика. Терминология. Вып. 92. М.: Наука, 1978. $32\,\mathrm{c}.$
- Girina O.A. Chronology of Bezymianny volcano activity, 1956–2010 // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 22–41.
- 6. Molchan G. M. Strategies in strong earthquake prediction // PEPI. 1990. Vol. 61. P.84–98.