

УДК 550.849:550.34

Г. Н. Копылова¹, Н. В. Гусева², А. С. Ефстифеева², С. В. Боллина¹

Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский е-mail: gala@emsd.ru

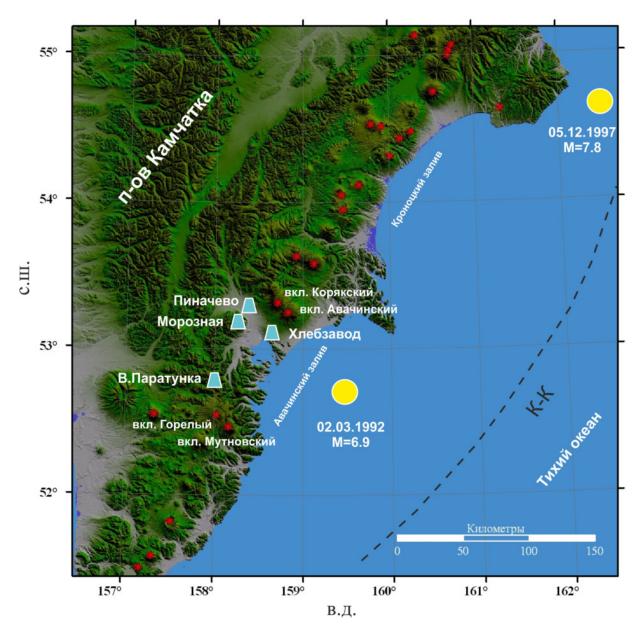
² ΦΓΑΟУ ВО «Национальный исследовательский Томский политехнический университет», г. Томск, 634 000; e-mail: unpc_voda@mail.ru

Вариации насыщенности подземных вод вторичными минералами в связи с сильными землетрясениями

В работе рассматриваются особенности химического состава воды 11-ти режимных источников и самоизливающихся скважин Камчатского филиала геофизической службы РАН (КФ ГС РАН) по данным гидрогеохимического опробования, выполненного в 2014 г.

С использованием данных регулярных гидрогеохимических наблюдений в 1989–1999 гг. показано, что насыщенность подземных вод вторичными минералами увеличивалась на постсейсмических стадиях Камчатского землетрясения 2 марта 1992 г., M=6,9 и Кроноцкого землетрясения 5 декабря 1997 г., M=7,8 в большинстве скважин и источников, либо наблюдался тренд к состоянию равновесия. В меньшей степени проявились вариации насыщенности подземных вод вторичными минералами на стадиях подготовки указанных землетрясений.

Введение


На Камчатке с 1977 г. проводятся наблюдения за химическим составом подземных вод самоизливающихся скважин и источников в окрестностях г. Петропавловска-Камчатского с целью поиска гидрогеохимических предвестников землетрясений и разработки методов их прогнозирования. В изменениях концентраций отдельных компонентов состава подземных вод были зафиксированы аномалии в связи с сильными местными землетрясениями, в т. ч. гидрогеохимические предвестники за недели месяцы до их возникновения [3]. Вместе с тем, вопрос о генезисе и механизмах формирования таких гидрогеохимических аномалий недостаточно изучен в геохимическом аспекте. Необходимость всестороннего его рассмотрения с использованием данных аналитического определения состава подземных вод современными методами обусловлена тем, что адекватное понимание процессов формирования гидрогеохимических эффектов сейсмичности будет способствовать оптимальной организации специализированных наблюдений на самоизливающихся скважинах и источниках. Кроме этого, исследование зарегистрированных гидрогеохимических аномалий в изменениях режима наблюдательных скважин и источников на основе фундаментальных закономерностей формирования состава подземных вод в системах вода — горная порода даёт возможность содержательного объяснения таких аномалий.

Впервые реализация такого подхода была продемонстрирована в работе [4], в которой аномалия состава подземной воды скважины Морозная 1 в пе-

риод подготовки и реализации Камчатского землетрясения 2 марта 1992 г., М = 6,9 рассматривалась с использованием методов равновесной термодинамики и анализа элементарных химических реакций, проходящих в системе вода — порода [1]. Принималось, что начальными продуктами таких реакций являются породообразующие минералы и вода, конечными продуктами - вторичные минералы, а также поступающие в подземную воду ионы и нейтральные молекулы. По результатам химического анализа состава воды оценивалась степень насыщенности подземной воды относительно вторичных минералов с использованием индекса неравновесности или показателя A по [2]: $A = \lg(Kp/Q)$, где Kp — константа реакции, Q — квотант реакций или отношение фактического произведения активностей продуктов реакции к фактическому произведению активности исходных веществ. В соответствии с [2] по мере насыщения вод величина А уменьшается и стремится к 0. При пересыщении вод значения A становятся отрицательными. Значение A=0 характеризует равновесное состояние.

В 2014 гг. было выполнено обследование 11-ти режимных водопроявлений КФ ГС РАН с отбором проб воды. Химический анализ отобранных проб с определением в них макро — и микрокомпонентов производился в ПНИЛ гидрогеохимии НОЦ «Вода» Томского политехнического университета.

На рис. 1 приводится схема района работ и расположение гидрогеохимических станций Пиначево, Верхняя Паратунка, Морозная и Хлебозавод. В работе представлены данные о химическом составе

Рис. 1. Схема расположения гидрогеохимических станций КФ ГС РАН и эпицентров Камчатского и Кроноцкого землетрясений (показаны кружками)

воды скважины ГК-1 и четырёх термоминеральных источников станции Пиначево, скважин Морозная-1 (М-1) и Г-1 (станция Хлебозавод) и четырёх скважин станции Верхняя Паратунка (ГК-5, ГК-15, ГК-17, ГК-44) по результатам опробования в 2014 г.

С использованием данных режимных наблюдений 1989–1999 гг., содержащихся в базе данных КФ ГС РАН, были рассчитаны вариации индексов неравновесности подземных вод по отношению к вторичным алюмосиликатным минералам, кальциту и ангидриту. Полученные графики показателей А сопоставлялись с моментами землетрясений, произошедших в Камчатской сейсмофокальной зоне, в т.ч. с наиболее сильными событиями: Камчатским землетрясением 2 марта 1992 г. и Кроноцким землетрясением 5 декабря 1997 г., сопровождавшимися

5-6 балльными сотрясениями по шкале MSK-64 (рис. 1, табл. 1).

На примере отдельных водопроявлений проведена реконструкция изменения насыщенности подземных вод вторичными минералами во времени и в сопоставлении с произошедшими землетрясениями.

Характеристика режимных водопроявлений по химическому составу воды

В табл. 2 приводятся данные о химическом составе воды 11-ти опробованных водопроявлений. На рис. 2 представлены диаграммы химического состава подземных вод.

Все рассматриваемые подземные воды являются напорными, поступающими с различных глубин: скв. ГК-1-400 — 1260 м; скв. М-1-310 — 556 м;

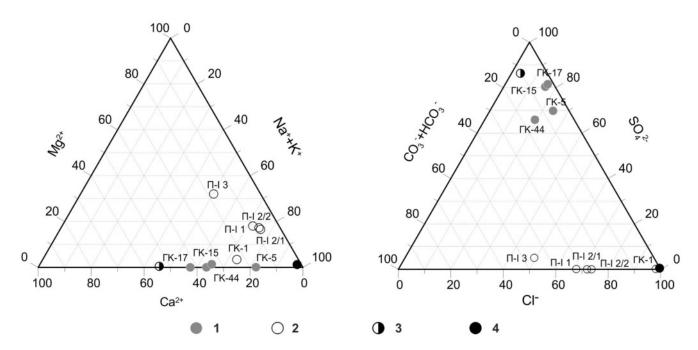
Таблина 1.	Данные о сильных земле	етрясениях1992-1997 гг.	. (http://www.glo	balcmt.org/)

Дата, дд.мм.гггг	Время, чч:мм:сс	Координаты, град		Магнитуда,	Глубина,	Эпицентральное		
		с. ш.	в. д.	Mw	Н,км	расстояние до станций R , км		
02.03.1992	12:29:47	52,85	160,36	6,9	50	119-151		
05.12.1997	11:27:21	54,31	161,91	7,8	33	262-300		

Таблица 2. Данные гидрогеохимического опробования режимных водопроявлений КФ ГС РАН в 2014 г.

Физико- химические- параметры	Мороз- ная	Пиначево					Хлебо- завод	Верхняя Паратунка			
	Дата отбора проб										
	20 июня	20 июня			20 июня	3 июля					
	M-1	ГК-1	P-I 1	P-I 2/1	P-I 2/2	P-I 3	Γ-1	ГК-5	ГК-15	ГК-17	ГК-44
T,° C	15,7	17,1	7,6	11,1	10,3	6,2	10,5	75,5	20,5	37,4	25,7
рН	8,9	7,4	7,2	7,7	7,5	7,5	9,1	8,8	8,0	8,9	8,3
М, мг/л	135	11 130	404	955	934	126	12 632	979	773	1469	407
Элекро- провод- ность, мкСм/см	204	17 220	615	1393	1343	173	22 050	1322	1041	1861	561
Анионы, мг/л											
CO_3^{2-}	2,4	<3	<3	<3	<3	<3	58,0	<3	<3	<3	0,96
HCO_3^-	7,3	165	116	250	232	48,8	73,2	48,8	20,5	24,0	52,2
SO_4^{2-}	80,6	< 0,05	0,36	< 0,05	< 0,05	4,8	42,8	494	447	854	187
Cl-	2,4	6724	150	382	387	34,5	7510	126	65	126	40,2
Br^-	< 0,02	9,0	0,25	0,57	0,63	0,03	6,8	0,19	0,19	0,19	0,07
\mathbf{F}^{-}	0,13	0,24	< 0,1	< 0,1	< 0,1	< 0,1	3,8	3,0	1,6	3,8	1,0
Катионы, мг/л											
Ca ²⁺	21,4	894	13	23,6	23,8	6,9	68,3	48,8	80,2	181,4	39,0
Mg^{2+}	0,11	78,9	14,2	30,2	31,0	7,5	31,9	0,14	0,06	0,06	0,97
Na ⁺	20,6	3202	106	260	252	21,6	4800	258	160	279	85,6
K^{+}	0,13	65,6	3,7	8,0	8,6	1,6	47,6	4,5	0,6	4,5	1,1
Li^+	< 0,01	0,72	0,01	0,04	0,04	< 0,01	3,0	0,9	0,37	0,66	0,26
Si, мг/л	5,8	19,9	16,4	17,1	16,9	14,9	<0,5	25,6	9,6	20,7	9,0

 Γ К-17, Γ К-44-125 — 1200 м. Для всех подземных вод характерны трещинный и трещинно-жильный типы циркуляции и естественный режим формирования химического состава воды.


По химическому составу среди рассматриваемых подземных вод выделяются:

- 1 термальные азотно-метановые хлоридные кальциево-натриевые воды с минерализацией M = 11,1 г/л (скважина ГК-1, станция Пиначево);
- 2 холодные метаново-азотные воды смешанного состава от гидрокарбонатного кальциево-маг-

скв. Γ -1-1710 — 2424 м, скважины Γ К-5, Γ К-15, ниевого до гидрокарбонатно-хлоридного натриевого с M = 0,1-1,0 г/л (источники в районе станции Пиначево);

- 3 холодные азотно-метановые хлоридные натриевые воды с $M = 12.6 \, \Gamma/\pi$ (скважина $\Gamma-1$);
- 4 термальные азотные хлоридно-сульфатные натриевые воды с $M = 0.4-1.5 \, \Gamma/\pi$ (скважины на станции Верхняя Паратунка);
- 5 холодные воды сульфатного натриево-кальциевого состава с $M = 0.14 \, \Gamma/\pi$ (скв. Морозная 1).

Изучение насыщенности подземных вод к породообразующим минералам, проводилось путём

Рис. 2. Диаграммы химического состава подземных вод режимных источников и самоизливающихся скважин: 1- станция Верхняя Паратунка, 2- станция Пиначево, 3- скважина Морозная 1, 4- скважина Хлебозавод (Γ -1).

построения диаграмм равновесия подземных вод с алюмосиликатными минералами, кальцитом и ангидритом при температуре 25° C [1, 4–5] (рис. 3)

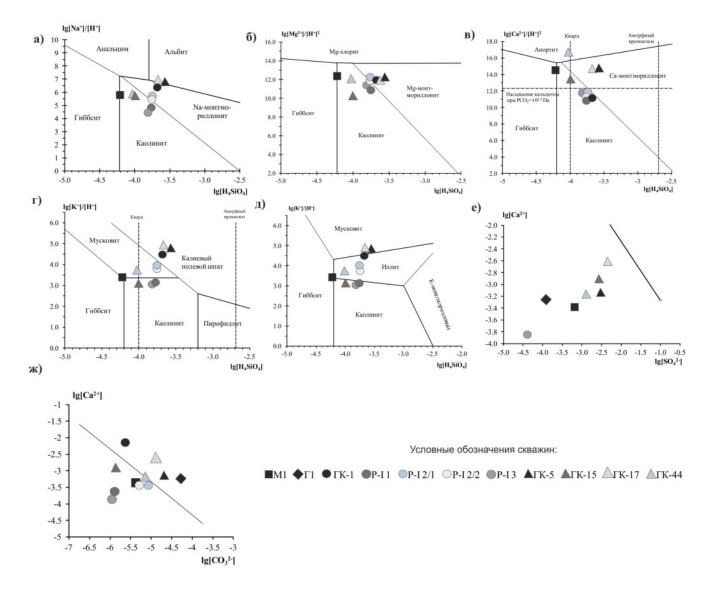
Из анализа таких диаграмм следует, что взаимодействие рассматриваемых подземных вод с породами носит равновесно-неравновесный характер [5]. При этом расположение расчетных точек показывает, что рассматриваемые подземные воды находятся в различной степени насыщения вторичными алюмосиликатными минералами и, как правило, они не насыщены эндогенными минералами и ангидритом.

Согласно классификации С. Л. Шварцева по равновесию природных вод с вторичными минералами, рассматриваемые подземные воды можно отнести к кремнистому карбонатно-кальциевому геохимическому типу, равновесному с Са-монтмориллонитом и кальцитом [5], соответствующему начальным стадиям развития системы вода-порода вследствие относительно малого времени взаимодействия воды с горной породой.

Вариации индексов неравновесности подземных вод к вторичным минералам в связи с сильными землетрясениями

В изменениях показателя *А* для отдельных водопроявлений станций Пиначево (рис. 4) и Верхняя Паратунка (рис. 5) обнаружены его постсейсмические вариации в течение первых месяцев после сильных землетрясений 1992 и 1997 гг. (рис. 1, табл. 1), которые произошли на эпицентральных расстояниях 120–300 км от станций и сопровожда-

лись сотрясениями с интенсивностью до 5-6 баллов по шкале MSK-64.

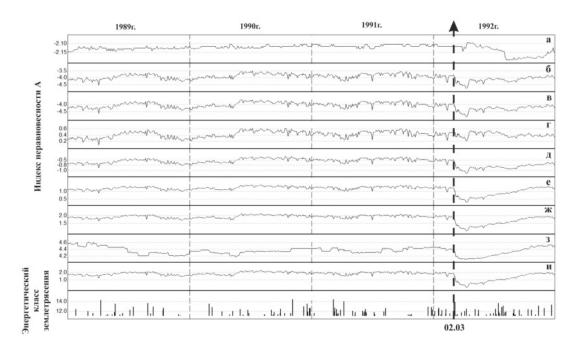

Для всех рассмотренных водопроявлений наблюдалось уменьшение величин A на постсейсмической стадии и, соответственно, увеличение насыщенности подземной вод вторичными минералами либо стремление к состоянию равновесия. Затем примерно в течение первых месяцев наблюдалось возвращение параметров A к фоновым величинам (см. рис. 4, 5).

На стадии подготовки Кроноцкого землетрясения гидрогеохимические предвестники в изменениях насыщенности рассматриваемых подземных вод вторичными минералами не проявлялись или проявлялись весьма слабо.

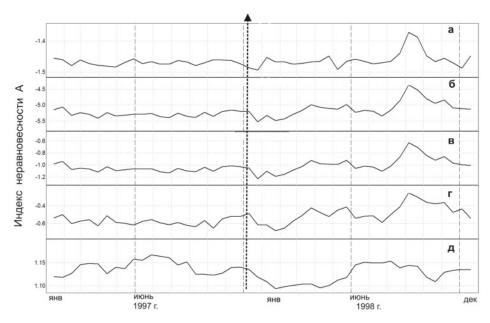
Заключение

Впервые выполнено специальное гидрогеохимическое опробование 11-ти режимных водопроявлений КФ ГС РАН с целью изучения химического состава подземных вод и оценки особенностей их формирования в системе вода — порода. Термодинамические расчёты показывают, что подземные воды режимных скважин и источников находятся на начальных стадиях взаимодействия в системе вода — порода. По геохимической классификации С. Л. Шварцева их можно отнести к кремнистому карбонатно-кальциевому геохимическому типу [5].

После сильных землетрясений 1992 и 1997 гг. происходило увеличение насыщенности подземных вод вторичными минералами (рис. 4, 5). При этом в связи с Кроноцким землетрясением 5 декабря 1997 г. увеличение насыщенности подземных вод


Рис. 3. Диаграммы равновесия подземных вод с алюмосиликатными, сульфатными и карбонатными минералами: анальцим — альбит — Nа-монтмориллонит — каолинит — гиббсит (а); Mg-хлорит — Mg-монтмориллонит — каолинит — гиббсит (б); анортит — Са-монтмориллонит — каолинит — гиббсит (в); мусковит — КПШ — пирофиллит — каолинит — гиббсит (г); мусковит — иллит — К-монтмориллонит — каолинит — гиббсит (д), с ангидритом (е) и кальцитом (ж) при температуре 25° С.

вторичными минералами проявилось в меньшей степени.


Результаты обработки данных режимных наблюдений указывают на изменение взаимодействия в системах вода — порода при землетрясениях, сопровождающихся 5–6-ти балльными сотрясениями (по шкале MSK-64) при прохождении сейсмических волн. Особенно ярко такой эффект проявился в связи с Камчатским землетрясением 2 марта 1992 г. Перед этим землетрясением также был обнаружен новый вид гидрогеохимического предвестника в форме увеличения насыщенности подземной воды из скважины Морозная 1 ангидритом [4].

Список литературы

- 1. *Гаррелз Р. М., Крайст Ч. Л.* Растворы, минералы, равновесия. М., Мир, 1968. 368 с.
- 2. Зверев В. П. Роль подземных вод в миграции химических элементов. М.: Недра, 1982. 182 с.
- 3. Копылова Г. Н., Сугробов В. М., Хаткевич Ю. М. Особенности изменения режима источников и гидрогеологических скважин Петропавловского полигона (Камчатка) под влиянием землетрясений // Вулканология и сейсмология. 1994. № 2. С. 53–70.
- 4. Копылова Г. Н., Копылова Ю. Г., Гусева Н. В. О генезисе и механизмах формирования гидрогеохимических аномалий в изменениях состава подземных вод

Рис. 4. Изменение индексов неравновесности подземной воды Пиначевского источника 1 (P-I 1) к каолиниту (a), Са-монтмориллониту (б), Мg-монтмориллониту (д), К-монтмориллониту (г), Na-монтмориллониту (д), кальциту (е), магнезиту (ж), ангидриту (з) и доломиту (и) в 1989–1992 гг. в сопоставлении с произошедшими землетрясениями с энергетическим классом $K_S \geqslant 10,5$. Вертикальными пунктирными линиями показаны наиболее сильные землетрясения с указанием их дат, жирная линия — Камчатское землетрясение 2 марта 1992 г., M=6,9.

Рис. 5. Изменение индексов неравновесности подземной воды из скважины ГК-15, станция Верхняя Паратунка к каолиниту (а), Са-монтмориллониту (б), Na-монтмориллониту (в), кальциту (г), ангидриту (д) в 1997–1998 гг. Вертикальная стрелка — Кроноцкое землетрясение 5 декабря 1997 г., М = 7,8

под влиянием сейсмичности. // Матер. региональной научной конференции «Вулканизм и связанные с ним процессы», посвящённой Дню вулканолога, 27–28 марта 2014 г. Петропавловск-Камчатский: ИВиС ДВО РАН, 2014. С. 181–186.

5. Шварцев С. Л., Рыженко Б. Н., Алексеев В. А. и ∂p . Геологическая эволюция и самоорганизация системы

вода — порода. Том. 2. Система вода — порода в условиях зоны гипергенеза. Новосибирск: Изд-во СО РАН, 2007. $389\,\mathrm{c}$.