

УДК 552.545+551.312.1

Р. М. Новаков¹, Д. П. Савельев², Т. П. Белова¹, С. В. Паламарь¹

¹ Научно-исследовательский геотехнологический центр ДВО РАН, Петропавловск-Камчатский; e-mail: 6rom6@mail.ru ² Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский e-mail: savelyev@kscnet.ru

Травертины Камчатского Мыса

Изучена морфология и состав отложений травертинов и травертиновых брекчий полуострова Камчатский Мыс, связанных с источниками пресных и относительно слабоминерализованных вод и приуроченных к гипербазитам раннемелового африканского габбро-перидотитового комплекса. Исследован химический состав водных проб и образцов травертина, описаны их текстурно-структурные особенности, сделаны предположения относительно генезиса.

Введение

При проведении полевых работ на п-ове Камчатский Мыс в пределах гипербазитового массива г. Солдатской нами исследованы травертиновые отложения (рис. 1). Травертин — пористая порода, образовавшаяся в результате осаждения карбоната кальция (кальцита, арагонита) из горячих или холодных углекислых источников. Проявления травертина на Камчатке связаны с горячими источниками гидротермальных систем: Налычевской, Вилючинской, Пущинской, Оксанской и Шапаонской. В Гейзерной системе (Долина Гейзеров) травертины сопровождают гейзериты [7]. Воды Налычевской гидротермальной системы образуют травертины из кальцита и арагонита с окислами железа и мышьяковистыми минералами [6]. На территории Камчатского Мыса карбонатные отложения в виде натечных форм травертина (мраморный оникс) обнаружены в ходе геологосъёмочных работ в верховьях р. Пикеж (рис. 1) и по левому притоку р. Бол. Перевальная [2, 3].

Геологическое строение района и описание травертиновых проявлений

Карбонатные отложения приурочены к самому крупному массиву гипербазитов горы Солдатской, а также к более мелким телам ультраосновных пород и к зонам серпентинитового меланжа (рис. 1). Массив г. Солдатской является наиболее крупным выходом гипербазитов в южной части п-ова Камчатский Мыс (Африканском блоке) [3, 8]. Африканский блок сложен преимущественно меловыми вулканогенно-осадочными отложениями смагинской и пикежской свит и образованиями африканского габбро-перидотитового комплекса. В незначительной степени развиты терригенные миоценовые отложения. Все вышеперечисленные комплексы сложнодислоцированы и слагают несколько тектонических пластин. Гипербазиты г. Солдатской представлены преимущественно гарцбургитами и дунитами,

в различной степени серпентинизированными, отмечены также клинопироксениты, вебстериты, верлиты, лерцолиты [3, 8]. Восточная граница массива представляет собой мощную зону серпентинитового меланжа.

Травертины Камчатского Мыса формируются холодными подземными водами, пресными и с относительно повышенной минерализацией, выходы которых представляют собой небольшие источники, растекающиеся по склону, с дебитом около 1–2 л/с, более крупные ручьи, вытекающие из-под морен, а также просачивания подземных вод на склонах.

Ниже источников с низким дебитом, не формирующих водотоков с выраженным руслом, образуются серовато-белые, белые, желтоватые корки мощностью до 10–15 см (рис. 2). Поверхность корок мелкобугристая, иногда заглаженная водой, текстура обычно почковидная, сферолитовая, слоистая (рис. 3). Размер почек от 0,5 до 5 см (рис. 4).

На склонах под источниками иногда возникают террасеты — площадки, покрытые микрогурами тонкими корковидными отложениями коричневато-белого карбоната, образующими кольцо вокруг западинки (ванночки) с водой размером от 0,5 до 7 см (рис. 5*a*, 6). В западинках обычны мелкие обломки пород. Возникновение микрогуров возможно при дебите источника менее 0,1 л/с [5]. Обычно дебит источников на склоне составляет 1-2л/с (визуальная оценка). При этом террасеты в водотоке возникают на некотором удалении от истока, там, где поток воды растекается по склону и разбивается на отдельные струи с дебитом менее 0,1 л/с (рис. 5б). В результате оказывается возможным образование микрогуров. Иногда в воде источников отмечается замещение органического вещества карбонатом (рис. 7).

Формирующийся травертин цементирует коллювиальные и пролювиальные отложения на склонах и в тальвегах распадков, а также гравийно-галечни-

Рис. 1. Обзорная схема геологического строения п-ова Камчатский мыс (по [3], с изменениями): 1 – рыхлые плиоцен-четвертичные отложения (морские, аллювиально-морские, аллювиальные, флювиогляциальные); 2 миоценовые гравелиты, брекчии, конгломераты, песчаники, туфопесчаники и аргиллиты; 3 – верхнемеловые песчаники пикежской свиты; 4 — нижне-верхнемеловые вулканогенно-кремнистые отложения смагинской свиты; 5 — габброиды; 6 — массивы гипербазитов; 7 — полимиктовый и мономиктовый серпентинитовый меланж; 8 конгломераты и брекчии с карбонатным цементом плиоцен-четвертичного возраста; 9 — разрывные нарушения: а) установленные, б) предполагаемые; 10 — проявления травертинов и мраморного оникса: а) исследованные авторами, б) по данным предшественников; 11 — местоположение района исследований (на врезке).

та, образуя конгломераты и брекчии мощностью до первых метров (рис. 8). Иногда они пересекают русла ручьёв, образуя небольшие водопады высо-

ковые отложения плиоцен-четвертичного возрас- серый, с массивной, иногда почковидной, сферолитовой текстурой. Местами углекислые воды просачиваются уже из травертиновых брекчий, образуя сверху свежие корки. На рис. 9 видно, как из трещитой до 1,5-2 м. Травертин в цементе светло-серый, ны, по-видимому, тектонического происхождения,

Рис. 2. Формирование натечных форм травертинов поверх травертиновых брекчий.

Рис. 3. Внутренняя текстура травертиновых корок.

пересекающей относительно выветрелые травертиновые отложения, вытекает карбонатный источник, из которого отлагаются свежие натечные формы травертина.

Источники с дебитом порядка 5 л/с (визуальная оценка) формируют водотоки с выраженным руслом, где под водяными пленками и текущей водой на поверхности камней образуются налеты и корочки карбоната кальция белого цвета с желтоватым

Рис. 4. Почковидная поверхность натечных форм травертина.

оттенком толщиной до 0,5 см. Структура корок — радиально-лучистая, характерная для арагонита. По мере отдаления от источника толщина карбонатных корочек на обломках аллювия уменьшается и исчезает.

Минералогия и геохимические особенности травертинов

В аналитическом центре ИВиС ДВО РАН травертины исследованы методами химического анализа (аналитик Н. А. Соловьёва) и рентгенофлуоресцентной спектрометрии на приборе «S4 PIONEER» (аналитик Е. В. Карташёва). Минеральный состав изучен на рентгеновском дифрактометре «MAXIMA Shimadzu» (аналитик М. А. Назарова). В химико-технологической лаборатории НИГТЦ ДВО РАН проведён химический анализ травертинов и водных проб.

По результатам рентгеноструктурного анализа четыре образца травертинов определены как кальцит, два — как арагонит и один — как смесь кальцита с арагонитом. Среднее содержание СаО по данным химических анализов, проведённых разными методами в разных лабораториях, составляет 47,9%, MgO — 3,5%, FeO — 0,5%. В одной из проб отмечена примесь стронция до 1118 г./т.

Воды источников (таблица), щелочные со значением pH от 10,55 до 11,18 или близкие к нейтральным с pH — 7,35.

Пробы воды резко отличаются по минерализации. Так, проба № Д-1270 имеет относительно повышенную минерализацию, равную 825 мг/л. Водные пробы № 3036 и № 3037 пресные; их минерализация составляет 88,1 и 106 мг/л. Повышенная минерализация пробы № Д-1270 обусловлена, в основном, содержанием натрия (327 мг/л). На долю щелочных металлов приходится 97,49%-экв. Содержание катионов натрия и калия уравновешивается содержаниями хлорид-ионов, карбонат — и гидрокарбонат-ионов, которые в сумме дают 97,77%-экв.

	r coy		ECNULU AHAJIMSC	ди хидприа и	UU STATERACATER	I GUANNEDION A	ו-טבא אמאדאמ			
	№ проб		D-1270			3036			3037	
Компоненты	Дата отбора		29,08.12			29,08.12			29,08.12	
_	ПО, мг/л	(C土Δ) Mr/JI	мг-экв/л	%-ЭКВ	(C土Δ) Mr/JI	мг-экв/л	%-ЭКВ	(C土Δ) Mr/JI	мг-экв/л	%-ЭКВ
pH *			$11,18\pm0,02$			$10,55\pm 0,02$			$7,35{\pm}0,02$	
\mathbf{K}^+	0,1	$6,82{\pm}1,09$	0,174	1,18	$1,49{\pm}0,24$	0,038	2,33	$0,21{\pm}0,03$	0,005	0,35
Na^+	0,5	$327{\pm}56$	14,220	96, 31	$11, 3{\pm}1, 9$	0,492	30,17	$2,15{\pm}0,37$	0,094	6,53
NH_4^+	0,05	<0,05			<0,05			<0,05		
Ca^{2+}	1,0	$7,21{\pm}0,50$	0,360	2,44	$13,7{\pm}1,0$	0,684	41,94	$4,71{\pm}0,33$	0,235	16, 32
Mg^{2+}	0,5	$0,10{\pm}0,01$	0,008	0,05	$5,01{\pm}0,55$	0,412	25, 26	$13,4{\pm}1,5$	1,102	76,53
Fe^{2+}	0,05	<0,05			<0,05			<0,05		
Fe^{3+}	0,05	$0,06{\pm}0,01$	0,003	0,02	$0,09{\pm}0,02$	0,005	0,30	$0,07{\pm}0,01$	0,004	0,28
∑ катионов		341	14,765	100	31,6	1,631	100	20,5	1,440	100
F-	0,1	<0,1			<0,1			<0,1		
Cl-	1,0	$321{\pm}23$	9,500	62,86	$14,2{\pm}1,0$	0,400	25,00	$9,93{\pm}0,70$	0,280	19,47
CO_3^{2-}	Расчётный	113 ± 1	4,780	31,63	$27,0{\pm}0,6$	0,900	56, 25	I	I	I
HCO_3^-	5,0	$32, 3\pm 0, 6$	0,530	3,51	$12,2{\pm}0,5$	0,200	12,50	$68, 3{\pm}0, 7$	1,120	77,89
${ m SO}_4^{2-}$	1,0	$9,61{\pm}1,63$	0,200	1,32	$1,92{\pm}0,33$	0,040	2,50	$1,44{\pm}0,24$	0,030	2,09
NO_2^-	0,02	<0,02			<0,02			<0,02		
NO_3^-	0,1	$0,24{\pm}0,02$	0,004	0,03	$0,56{\pm}0,04$	0,009	0,56	$0,52{\pm}0,04$	0,008	0,56
PO_4^{3-}	0,05	<0,05			<0,05			<0,05		
${ m H_3SiO4^-}$	Расчётный	$5,42{\pm}0,12$	0,057	0,38	$0,47{\pm}0,03$	0,050	3,13	I	I	I
$ m H_2SiO_4^{2-}$	Расчётный	$1,93{\pm}0,05$	0,041	0,27	$0,07{\pm}0,02$	0,001	0,06	I	I	I
∑ анионов		484	15,112	100	56,4	1,600	100	80,2	1,438	100
${ m H_3BO_3}$	0,57	<0,57			<0,57			<0,57		
H ₄ SiO ₄ pacrb.	0,02	$0,31{\pm}0,03$			$0,07{\pm}0,02$			$0,34{\pm}0,03$		
H_2CO_3	Расчётный							$5,14{\pm}0,52$		
Минерализация		825			88,1			106		
Примечание. ПО -	- предел обнаруж	сения								

Рис. 5. Террасеты на склоне. *a*) террасеты, образуемые при растекании воды по склону (вид сверху); б) схема образования террасет: 1 — склоновые отложения; 2 — источник. Зоны формирования травертиновых корок: 2 — с микрогурами; 3 — без микрогуров.

Рис. 6. Микрогуры.

В пробе № 3036 на долю катионов щелочных металлов приходится 30,50%-экв., в пробе № 3037 — 6,88%-экв. Содержание хлорид-ионов в пробе № 3036 — 14,2 мг/л (25,00%-экв.) и 9,93 мг/л (19,47%-экв.). Обращает на себя внимание преобладание карбонат — и гидрокарбонат-ионов в пробе № 3036, которые в сумме дают 68,75%-экв.

Количество катионов кальция изменяется от 4,71 мг/л (16,32%-экв.) в пробе № 3037 до 13,7 мг/л в пробе № 3036. В пробе № Д-1270 содержание кальция составляет 7,21 мг/л. Содержание магния в пробе № 3037 наибольшее — 13,4 мг/л, что в 2,8 раза превышает содержание кальция. Его вклад в суммарное содержание катионов — 76,53%-экв. и совместно с кальцием составляет 92,85%-экв.

Рис. 7. Опавший лист дерева, замещенный карбонатом в источнике.

Наименьшее содержание магния — 0,1 мг/л в пробе № Д-1270. В пробе № 3036 содержание магния 5,01 мг/л (25,26%-экв.) в сумме с кальцием — 67,20%-экв.

Содержание растворённой ортокремниевой кислоты H_4SiO_4 в пробе N_2 Д-1270 — 0,31 мг/л, но, учитывая щелочную реакцию раствора, следует отметить, что при рH = 11,18 часть кремниевой кислоты находится в диссоциированном состоянии в виде $H_2SiO_4^{2-}$ и H_3SiO^{4-} . Таким образом, суммарное содержание ортокремниевой кислоты составляет 7,66 мг/л.

В пробе № 3036 (рН = 10,55) ортокремниевая кислота также находится в растворе преимущественно в виде иона $H_3 SiO^{4-}$ (0,47 мг/л), отмечается

Рис. 8. Брекчия с травертиновым цементом.

Рис. 9. Из трещины, пересекающей выветрелые травертиновые отложения, вытекает карбонатный источник, формирующий более молодые натечные формы травертина.

невысокое содержание иона $H_2SiO_4^{2-} - 0.07 \text{ мг/л}$ и молекулярной формы $H_4SiO_4 - 0.07 \text{ мг/л}$.

В пробе № 3037 (рH = 7,35) вся ортокремниевая кислота присутствует в молекулярной форме $(0,34 \,\mathrm{mr/n})$.

Угольная кислота в пробах № Д-1270 и № 3036 присутствует преимущественно в виде гидрокарбонат-ионов. В пробе № 3037, с учётом pH раствора, угольная кислота находится в виде гидрокарбонат-ионов и частично в молекулярной форме.

Механизм формирования травертинов

Образование травертинов — следствие равновесно-неравновесного состояния системы вода-порода. Карбонатные отложения формируются в результате освобождения и дегазации растворённой угольной кислоты, роста рН и связанного с этим уменьшения растворимости карбоната кальция [1]. Реакция образования кальцита происходит по следующей схеме [4]:

$$\operatorname{Ca}^{2+} + 2\operatorname{HCO}_3^- = \operatorname{CaCO}_3 + \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2.$$

Источники кальция в подземных водах

Формирование травертинов невозможно без поступления кальция в подземные воды. По нашим наблюдениям, большинство выходов источников, формирующих карбонатные отложения, травертинов, травертиновых конгломератов и брекчий находятся в пределах гипербазитового массива г. Солдатской или вблизи других тел ультраосновных пород и зон серпентинитового меланжа. В пределах массива горы Солдатской, где травертины распространены наиболее широко, отмечаются зоны меланжа с блоками пород смагинской свиты, но в сравнении с ультраосновными массивами их распространение незначительно, и источники с карбонатными отложениями вблизи этих блоков не встречены. Это довод в пользу того, что источником кальция служили гипербазиты, хотя в целом они содержат незначительное количество CaO. Основным процессом, поставляющим кальций в подземные воды, по-видимому, является серпентинизация. При этом кальций, содержащийся в оливинах, клино — и ортопироксенах гипербазитов (преимущественно гарцбургитов и дунитов), высвобождается в процессе гидратации, переходит в растворимые формы и выносится водой. Это подтверждают результаты петрографических исследований. Дуниты и гарцбургиты массива г. Солдатской, наиболее крупного на п-ове Камчатский Мыс, замещаются серпентинитом двух этапов серпентинизации, при этом карбонат выделяется по секущим прожилкам серпентина второго этапа [3].

Список литературы

- Аверкин Ю.А. Динамика отложения компонентов из гидротермального раствора при выкипании СО₂ // Геохимия. 1987. № 11. С. 1580–1585.
- Бахтеев М.К., Морозов О.А., Тихомирова С.Р., Свердлов В.С. Структурно-вещественные комплексы, тектоника и история развития Восточной Камчатки. (Отчёт по хоздоговорной теме № 214 за 1989–1992 гг.) ТГФ комитета «Камчатприродресурс», 1995.

Рис. 10. Карбонатные отложения (белое) в русле ручья, формирующегося ниже источника, вытекающего из отложений донной морены.

- Бояринова М.Е., Вешняков Н.А., Коркин А.Г., Савельев Д. П. Государственная геологическая карта Российской Федерации масштаба 1:200 000. Изд. 2-е. Серия Восточно-Камчатская. Лист 0–58-XXVI, XXXI, XXXII (Усть-Камчатск). Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ. 2007. 226 с. +2 вкл.
- Бычков А. Ю., Киквадзе О.Е., Лаврушин В. Ю., Кулешов В.Н. Физико-химическая модель формирования изотопного состава карбонатных травертинов источника Тохана (Приэльбрусье, Северный Кавказ) // Геохимия. 2007. № 3. С. 269–281.
- Максимович Г.А. Генетический ряд натечных отложений пещер (карбонатный спелеолитогенез) // Пещеры. Вып 5(6). Институт карстоведения и спелеологии

пермского университета им. Горького А.А.. Пермь. 1965. С. 18.

- Масуренков Ю. П., Комкова Л.А. Геодинамика и рудопроявление в купольно-кольцевой структуре вулканического пояса. М.: Наука, 1978. 273 с.
- Набоко С. И., Луговая И. П., Загнитко В. Н. Изотопный состав кислорода и углерода в современных травертинах и гейзеритах Камчатки // Минералогический журнал. 1999. Том. 21. № 5/6. С. 33–39.
- Хотин М.Ю., Шапиро М. Н. Офиолиты Камчатского Мыса (Восточная Камчатка): строение, состав, геодинамические условия формирования // Геотектоника. 2006. №4. С. 61-89.