

УДК 550.344.43

В. К. Лемзиков 1 , М. В. Лемзиков 1 , В. Т. Гарбузова 2

- Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский е-mail: lemzikov@kscnet.ru
- ² Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский

Предварительные результаты применения модели Брюна для оценки поглощающих свойств среды по записям вулканических землетрясений вулкана Ключевской

В работе показана возможность применения модели спектра Брюна к спектрам S-волн вулканических землетрясений. Использованы вулканические землетрясения, которые имеют чёткие вступления S-волн; это в основном землетрясения 2-го и 3-го типов по классификации Токарева. Кроме того, для уменьшения влияния многих неопределённостей вулканические землетрясения выбирались с очагами в очень ограниченном объёме под вулканом Ключевской. Для этих землетрясений проводился одновременный подбор параметров очаговых спектров и среды распространения сейсмических волн. Предложенный метод позволяет оценивать параметры поглощения энергии сейсмических волн и станционные поправки.

Введение

Оценка параметров среды в вулканических зонах является одной из важнейших задач. Инверсная схема, предложенная в работах [13, 15, 16], позволяет по записям землетрясений на станциях эффективно вычислять не только параметры очаговых спектров, но и добротность среды, в которой распространяются сейсмические волны и станционные поправки.

На спектрах смещения почвы вулканических сейсмических сигналов определяются все элементы, которые отмечаются на аналогичных спектрах смещения сейсмических волн тектонических землетрясений: плоская низкочастотная часть, угловая частота и спад высокочастотной части по некоторой степени частоты. Учитывая это, возможно применение в качестве модели очагового спектра вулканического землетрясения модель Брюна, предложенную в [17] для тектонических сейсмических очагов. Эта модель уже была применена к записям вулкано-тектонических землетрясений вулкана Ключевской [3], при анализе микроземлетрясений вулкана Этна (Италия) [18] и при оценке параметров очагов вулканических землетрясений вулкана Этна в период его извержения в 1991–1993 гг. [20].

Целью работы является применение модели спектра Брюна к спектрам S-волн вулканических землетрясений вулкана Ключевской для того, чтобы определить параметры среды на пути распространении сейсмических волн и в верхних слоях под станциями (станционные поправки) с использованием инверсионного метода, предложенного в [16].

Исходные данные

Исходными данными являются вулканические землетрясения вулкана Ключевской, которые можно

отнести ко 2-му или 3-му типам по классификации П. И. Токарева[6, 7]. Очаги выбранных вулканических землетрясений расположены в очень ограниченном объёме под вулканом. Этот объём определяется координатами: широтой $56,06^\circ-56,10^\circ$ с. ш.; долготой: $160,60^\circ-160,70^\circ$ в. д. Диапазон энергетического класса выбранных землетрясений составляет $5,5 < K_{S1,2}^{\Phi68} < 6,3$, где $K_{S1,2}^{\Phi68} -$ шкала энергетических классов землетрясений по [8]. Диапазон глубин: -0,4 < H < 0,4, где глубина очагов (H) в км. Всего было выбрано 114 событий за период 2000-2004 гг. (рис. 1).

Записи землетрясений, выполнены сетью цифровых радиотелеметрических сейсмических станций (далее, РТСС) Камчатского Филиала Геофизической Службы Российской Академии Наук (КФГС РАН). Использовались материалы РТСС: Цирк (СІК), Крестовский (КRS), Логинов (LGN), Зелёная (ZLN), Ключи (КLY), Каменистая (КМN) и Копыто (КРТ). Каждая РТСС регистрирует три компоненты скорости колебаний грунта: две горизонтальные (SHE, SHN) и одну вертикальную (SHZ). Частота дискретизации вулканических сейсмических сигналов на РТСС равна 128 с⁻¹. Длительность участка сейсмограммы вулканического землетрясения, выбранного для спектрального анализа и содержащего S-волны, не превышала 4 с [1, 2].

Сейсмограммы вулканических землетрясений корректировались на амплитудно-частотные характеристики сейсмических каналов. Перед спектральным преобразованием участков сейсмограмм, содержащих S-волны, выполнялись стандартные процедуры: удаление нулевого и временного тренда, косинусообразная коррекция концов анализируемого интервала записи сигнала. Экспериментальные

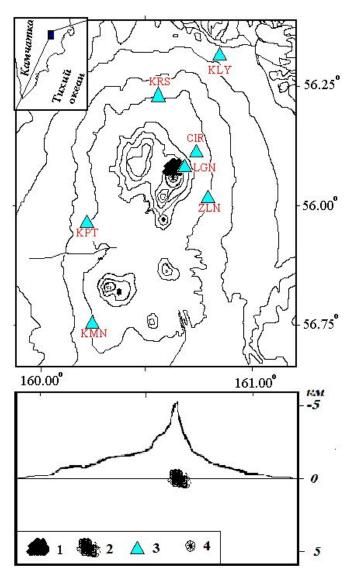


Рис. 1. Карта района исследования. 1 — область очагов вулканических землетрясений на глубине 0 км, которая в горизонтальной проекции почти совпадает с вершиной вулкана Ключевской; 2 — то же в вертикальной проекции; 3 — сейсмические станции; 4 — вершина вулкана в горизонтальной проекции. На врезке, расположение горизонтальной проекции на карте Камчатки.

спектры участков S-волн вулканических землетрясений для упрощения моделирования сглаживались кубическим сплайном в диапазоне частот $0,5-18\,\Gamma$ ц и сглаженный спектр оценивался в точках с частотами: $1,\,2,\,3,\,4,\,6,\,8,\,10,\,12\,\Gamma$ ц.

Сейсмограмма вулканического землетрясения, приведенная на рис. 2, характеризуется преобладанием низкочастотных колебаний. Наблюдается вступление продольных (Р) и поперечных (S) сейсмических волн. S-волны более интенсивные по сравнению с Р-волнами. Причём последние отчётливо отмечаются только на вертикальном (SHZ) сейсмическом канале, а S-волны заметны по сравнению

с уровнем микросейсм на всех каналах. Поэтому только участки S-волн вулканических землетрясений выбрались для спектрального анализа.

Метод анализа

В работе используется метод, предложенный в работе [16]. Согласно данному методу, экспериментальные спектры участков S-волн вулканических землетрясений вулкана Ключевской сравниваются с некоторыми модельными спектрами. Для вулканических землетрясений смоделируем форму очагового спектра скорости, как это приведено в [16] в виде:

$$\dot{v}(f) = \frac{2\pi f \bar{\Omega}_0}{\left(1 + (f/f_c)^{\gamma}\right)^{1/2}},$$
 (1)

где f — частота, fc — угловая частота спектра, $\bar{\Omega}$ — значение плоской низкочастотной части спектра смещения, которое является пропорциональным к сейсмическому моменту \mathbf{M}_0 , γ — абсолютное значение наклона спадания высокочастотной асимптоты спектра.

Спад высокочастотной части спектра смещения Брюна по 2-ой степени частоты для соотношения (1) происходит при значении параметра $\gamma=4$. Влияние условий распространения сейсмических волн в среде не только уменьшают спектры сейсмических волн по модулю, но и значительно искажают их. Учёт поправок на расхождение и поглощение сейсмических волн уменьшает величину энергии спектра сейсмических волн на гипоцентральном расстоянии R км от очага по формуле:

$$\dot{x}(f) = \frac{2\pi f \bar{\Omega}_0}{\left(1 + (f/f_c)^{\gamma}\right)^{1/2}} \cdot \frac{1}{G(R)D(f)S(f)}, \qquad (2)$$

где G(R) — функция, характеризующая ослабление сейсмических волн из-за геометрического расхождения; D(f) — функция, описывающая поглощение энергии сейсмических волн в среде; S(f) — станционная поправка.

Функция, характеризующая направленность излучения очага землетрясения, в уравнении (2) опущена, так как ею можно пренебречь в случае использования пунктов регистрации почти полностью окружающих очаг (см. рис. 1). Левая часть в соотношении (2) при правильно подобранных корректирующих коэффициентах на расхождение и поглощение сейсмических волн будут в некоторых вариантах равны экспериментальным спектрам, а, в общем случае, соответствовать им. Таким образом, путём инверсии и сравнения реальных данных с модельными спектрами, можно подобрать неизвестные коэффициенты поглощения сейсмических волн в соотношении (2). Зависимость от угловой частоты не линейна, поэтому соответствующая процедура инверсии является обязательно повторяющейся.

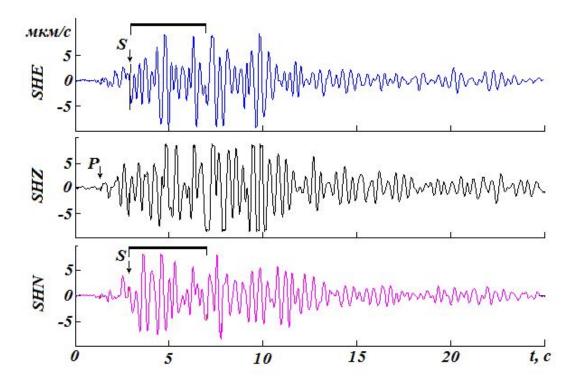


Рис. 2. Пример записи вулканического землетрясения 2-го типа, произошедшего 5 августа 2001 г. в 19:48 (UTC), c< = 5,7, на глубине H = 0,36 км под вулканом Ключевской, зарегистрированного РТСС LGN. Пояснения в тексте.

ному расстоянию R. Подставив в соотношение (2) выражение для расхождения и поглощения сейсмических волн, [11, 12, 19], получим:

$$\dot{x}(f) = \frac{2\pi f \bar{\Omega}_0}{\left(1 + (f/f_c)^{\gamma}\right)^{1/2}} \cdot \frac{1}{R} e^{-\pi f(t^* + T/Q)}, \qquad (3)$$

где T — время пробега сейсмических волн; T/Q поглощение, зависимое от расстояния; Q — добротность среды, t^* — поглощение за счёт грунтовых условий в районе пункта регистрации (станционная поправка).

Обозначая значения экспериментального спектра мощности, как и разделяя их на соответствующие модельные значения из соотношения (3), получаем разницу между экспериментальным и модельным спектрами. Запишем в общем виде выражение для разницы между экспериментальным и модельным спектром, и для линеаризации получаемого соотношения относительно и 1/Q, прологарифмируем его. Просуммировав все остатки варианта моделирования, получим выражение:

$$\chi^{2} = \sum_{k,n} \left| \ln \dot{u}_{k}(f_{n}) - \ln \dot{v}_{j}(f_{n}) + \right.$$

$$+ \ln G(R) + \ln D(f_{n}) + \ln S(f_{n}) \right|^{2} / \sigma_{k}^{2}(f_{n})$$
(4)

где $\sigma_k^2(f_n)$ имеет смысл дисперсии исходных данных и вычисляется как отношение сигнал/шум для диапазона частот спектра. Она вычисляется

Коэффициент геометрического расхождения при- по микросейсмам до начала записей первых вступнимается обратно пропорциональным гипоцентраль- лений продольных волн вулканических землетрясений и записью анализируемого сигнала (участка S-волн).

> Соотношение (4), выражающее разницу между экспериментальным и модельным спектрами, содержит в качестве неизвестных следующие параметры: f_c , t^* , Q. Выражение (4) можно составить для нескольких землетрясений, с очагами в различных точках полупространства по записям нескольких станций и определить соответствующие параметры. Однако из-за неопределённости многих параметров, удовлетворительного решения может быть не получено. В целях упрощения, используем следующие обстоятельства. Во-первых, угловая частота f_c очагового спектра толчка имеет только одно значение на записях этого землетрясения всех станций. Во-вторых, для одной станции значения параметров t^* и Q для землетрясений очагами практически в одном и том же месте должны быть приблизительно равными. Такие допущения значительно упрощают процедуру вычислений.

> В первой подинверсии определялась угловая частота f_c очагового спектра по записям всех станций с использованием всего диапазона анализируемых частот. В этом случае выполняется подбор значения угловой частоты модельного спектра Брюна и скорректированные на поглощение сейсмических волн значения этого спектра сравниваются с записями этого землетрясения по всем станциям. Во второй подинверсии, которая обязательно выполняется после первой, уже при определённых значениях

угловой частоты f_c определялись последовательно параметры t^* , Q по набору записей нескольких землетрясений одной станции. В каждом случае выполнялся подбор неизвестных параметров путём перебора.

В каждой подинверсии составлялось матричное уравнение

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_k \end{pmatrix} \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{k,k} \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ \dots \\ d_k \end{pmatrix}$$
 (5)

Столбец d для первой и второй подинверсий составлялся по значениям соотношения (4). Диагональные элементы матрицы определялись по соотношению сигнал/шум для каждой записи. Чтобы минимизировать соотношение (4), решение уравнений (5) выполняется методом SVD (Singular Value Decomposition). В первой подинверсии матричное уравнение составлялось с задачей определения угловой частоты f_c , а во второй — для определения параметров t^* , Q. Процесс нахождения параметров очага и среды повторялся, причём полученные значения в предыдущем решении служили ориентировочными данными для очередного решения. Этот переменный процесс последовательного вычисления первой и второй подинверсий продолжался до тех пор, пока не определялась наиболее оптимальная комбинация параметров, определяющих очаг землетрясений и среду.

Параметры очага и среды в соотношениях (4) и (5) в конкретных условиях расположения сейсмических станций и очагов землетрясений на вулкане Ключевской имеют вполне определённые диапазоны значений. Пределы значений станционных поправок t^* и добротностей среды Q при первоначальном расчёте принимались по ранее полученным результатам [4, 11–13]. Пределы значений угловой частоты f_c спектров оценивались по записям землетрясений.

Результаты моделирования

В первой подинверсии по набору записей по нескольким станциям определялась угловая частота fc очагового спектра S-волн вулканического землетрясения, используя весь диапазон частот. Для контроля использовались модельные спектры Брюна, в которых их высокочастотная часть спадает с разной скоростью, потому что для модели Брюна возможно применение разного уровня спада его высокочастотной части спектра. При $\gamma = 4$ в формуле (1) высокочастотная часть спектра смещения соответствует стандартной модели Брюна с уровнем спадания его во второй степени частоты. При $\gamma = 3$ и $\gamma = 5$ в формуле (1) возникает отклонение от упомянутой стандартной модели, соответственно, как более пологое и наоборот более крутое (см. рис. 3). Расчёты выполнялись

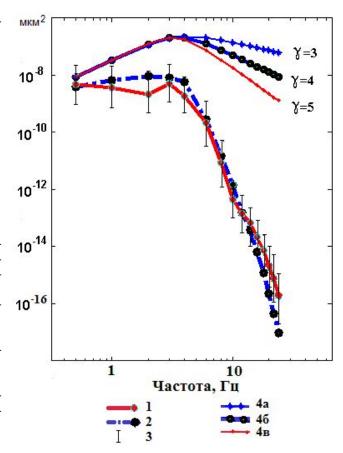
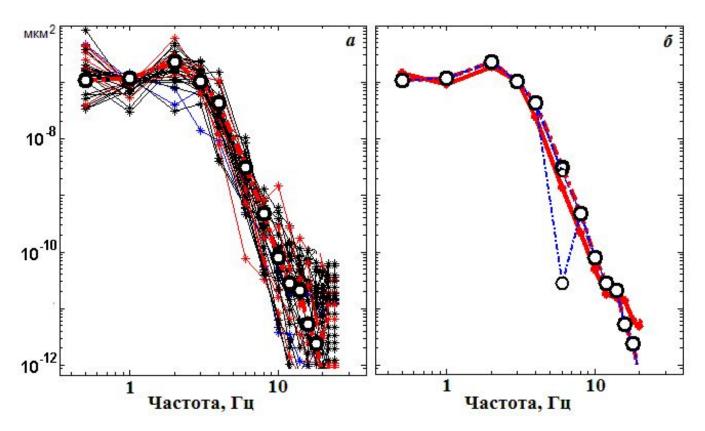



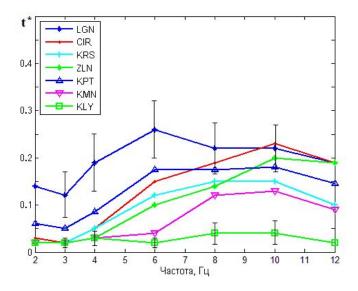
Рис. 3. Примеры сглаженных спектров участка S — волн вулканических землетрясения по РТСС СІR и модельные спектры Брюна. 1 — средний сглаженный экспериментальный спектр; 2 — модельный спектр Брюна, в котором спад высокочастотной части спектра смещения происходит по 2-ой степени частоты ($\gamma = 4$) и параметры поглощения выбраны в соответствии с реальными спектрами; 3 — среднеквадратичное отклонение значений средних сглаженных экспериментальных спектров; 4 — модельные спектры Брюна со спадом высокочастотной части: ($\gamma = 3$) — 4a, ($\gamma = 4$) — 46 и ($\gamma = 5$) — 4в.

по формулам (4), в которых параметр γ последовательно принимал разные значения: $\gamma=3$, $\gamma=4$ и $\gamma=5$. Дополнительно, при вычислении параметра f_c очагового спектра землетрясения необходимо использовать некоторые значения параметров t^* и Q. Для района вулкана Ключевской для этих целей использованы результаты из [5]. Статистические средние значения угловых частот очаговых спектров вулканических землетрясений вулкана Ключевской при величине выборки равной 114 приведены в таблице.

Отмечается систематическое увеличение значений угловой частоты f_c очаговых спектров вулканических землетрясений с увеличением уровня спада высокочастотной части, которое статистически значимое. Тенденция изменений угловой частоты спектров вулканических землетрясений показывает, что выбор более пологого или более крутого спада

Рис. 4. Пример влияния значений станционных поправок и добротности среды на экспериментальные спектры скорости вулканических землетрясений. Пояснения в тексте.

Статистические параметры значений угловых частот при разных моделях очаговых спектров.


спад спектра статистич. оценки	γ = 3	$\gamma = 4$	γ = 5
Среднее, Гц	3,22	3,54	3,94
Медиана, Гц	3,15	3,50	3,90
СКО, Гц	0,49	0,48	0,40

высокочастотного склона спектра по сравнению с моделью по f^{-2} приводит к систематическому отклонению в одном случае в сторону низких, а в другом — высоких частот от значений, полученных по модели по f^{-2} . Поэтому, опираясь на многолетний опыт изучения экспериментальных спектров тектонических землетрясений, выбран в модельном спектре в соотношениях (1, 2 и 3) для вулканических землетрясений параметр $\gamma=4$. С учётом этого, для каждого вулканического землетрясения получены значения угловой частоты f_c очагового спектра, которые в дальнейшем использовались при расчётах во второй подинверсии.

Во второй подинверсия определялись параметры t^* , Q отдельно на каждой частоте с использованием данных только одной станции. При этом уравнение (4) составлялось по записям нескольких землетрясений только одной станции. Значение станционной поправки t^* должно быть одинаковым для данной станции по записям любых землетрясений. Значе-

ние параметра Q по одной станции с очагами, расположенными практически в одном и том же месте полупространства, должны быть так же примерно равными по всем записям вулканических землетрясений. Эти начальные условия упрощают поиск решений; необходимо только определить истинные значения этих параметров. Значение угловой частоты f_c очагового спектра для каждого землетрясения в соотношении (4) используется по результатам первой подинверсии. Значения параметров t^* , Q, рассчитанные во второй подинверсии для каждой станции по всему диапазону частот спектра, подставлялись в соотношение (5), и расчёт по первой подинверсии повторялся, уточняя значение параметра f_c для каждого землетрясения. В нашем конкретном случае выполнялось 3-5 повторений для нахождения удовлетворительного решения.

Покажем влияние значений станционных поправок и добротности среды на экспериментальные спектры скорости вулканических землетрясений для условий регистрации их на близких расстояниях в вулканических зонах. На рис. 4а показаны нормированные спектры, полученные по горизонтальным (SHE, SHN) каналам РТСС СІR. Здесь же показан модельный спектр Брюна, в котором угловая частота $fc=2.0\,\Gamma$ ц, а значения коэффициентов t^* и Q выбраны как наиболее подходящие к приведённому набору данных. Далее на частоте 6 Γ ц значения коэффициентов t^* и Q изменены так, чтобы они заметно увеличили поглощающие энергии сейсми-

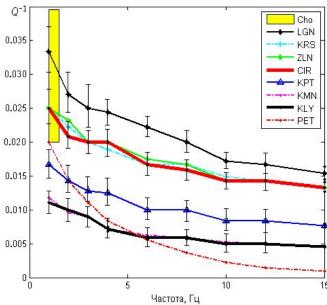


Рис. 5. Станционные поправки для РТСС Ключевской вулканической зоны.

ческих волн. т.е. значение коэффициента t^* увеличено по модулю в два раза, а Q наоборот уменьшено в два раза. Расчёты выполнены отдельно для этих коэффициентов. Результаты показаны на рис. 4б. Влияние изменения по модулю коэффициента Q незначительно; расчётные точки при таком изменении практически не сдвинулись на графике. В то же время влияние коэффициента t^* существенно. Увеличение коэффициента t^{*} по модулю в два раза привело к сильному «отскоку» точки от реальных данных. Таким образом, этот расчёт подтверждает, что сейсмические волны в данном случае в основном распространяются в поверхностных слоях среды и поэтому влияние станционной поправки велико. На больших расстояниях, в соответствии с соотношением (3), добротность среды окажет влияние на экспериментальные спектры, но влияние станционной поправки не изменится.

На рис. 5 показаны средние значения спектральных станционных поправок t^* . Чтобы не загружать график, средние квадратичные ошибки показаны только для PTCC LGN и KLY. Результаты по другим PTCC соответствуют отмеченным. Самые большие по модулю станционные поправки получены для PTCC LGN. Следует отметить, что по всем PTCC сохраняется общая тенденция: значения станционных поправок на всех частотах больше на тех PTCC, которые ближе к вулкану Ключевской. Для PTCC KMN и KLY они самые малые по модулю.

На рис. 6 приведены оценки добротности Q по всем РТСС. Самые низкие Q получены для РТСС LGN. Для РТСС CIR, KRS и ZLN получены примерно одинаковые зависимости Q от частоты. РТСС KLY и КРТ находится на одинаковом расстоянии от очагов вулканических землетрясений, однако для РТСС KLY получены такие же Q, как и для РТСС KMN, хотя последняя расположена дальше. Возможно, что для РТСС KLY влияние вулканической среды

Рис. 6. Оценки добротности Q по РТСС для вулканических землетрясений с очагами на глубине 0 км. Кроме обозначения в легенде дополнительно: Cho — из работы [14]; LGN; KRS; ZLN; CIR; KPT; KMN; KLY; PET.

при определении Q по вулканическим землетрясениям слабое. Чем ближе находится РТСС к вулкану Ключевской, тем больше величина поглощение энергии сейсмических волн.

Оценки Q, полученные в данной работе, сравнивались с работами [5, 14] В [5] было получены оценки Q по S-волнам тектонических землетрясений Восточно-Камчатской сейсмоактивной зоны. Результаты из [5] на рис. 5 приведены по станции Петропавловск (РЕТ). При сравнении этих результатов видно, что в вулканической зоне вулкана Ключевской наблюдается сильное поглощение сейсмических волн на всех частотах. Очень похожие к нашим оценкам параметра Q в вулканических зонах на частоте 1 Гц отмечаются в работе [14]

Выводы

В работе показано, что модель спектра Брюна для тектонических землетрясений может быть применена к спектрам S-волн вулканических землетрясений вулкана Ключевской. Предложен метод, который позволяет сделать оценку поглощения энергии сейсмических волн вулканических землетрясений и станционных поправок под станцией в районе вулканической зоны вулкана Ключевской.

Список литературы

Горельчик В.И. Гарбузова В.Т. Сейсмичность Ключевского вулкана как отражение современной магматической деятельности // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С. 352–370.

- смичность района Северной группы вулканов Камчатки 1971-1983 гг. // Вулканология и сейсмология. 1995. № 4/5. C. 54-75.
- 3. Зобин В. М. Динамика очага вулканических земле- 13. трясений. М.: Наука, 1979. 92 с.
- 4. Лемзиков В.К., Гарбузова В.Т. Метод оценки поглощения сейсмических волн местных вулканических землетрясений под вулканом Ключевской // Материалы конференции, посвящённой Дню вулканолога, 30-31 марта 2009 г., г. Петропавловск-Камчатский. 15. Петропавловск-Камчатский: ИВиС ДВО РАН, 2010. C. 167-177.
- 5. Лемзиков В.К. Поглощение и рассеяние поперечных сейсмических волн в литосфере Камчатки // Вулка- 16. нология и сейсмология. 2007. № 3. С. 50-63.
- Токарев П. И. Извержения и сейсмический режим вулканов Ключевской группы. М.: Наука, 1966. 118 с.
- Токарев П.И. Вулканические землетрясения Камчатки. М.: Наука, 1986. 164 с.
- Федотов С. А. Энергетическая классификация Курило-камчатских землетрясений и проблема магнитуд. М.:Наука. 1972. 116 с.
- 9. Хренов А. П., Двигало В. Н.. Кирсанов И. Т. и др. Вулкан Ключевской // Действующие вулканы Камчатки. Том. 1. М.: Наука, 1991. С. 104-145.
- 10. Andrews D. J. Objective determination of source parameters and similarity of earthquakes of different size // Earthquakes Source Mechanics / Eds Das S., Boatwright J., Scholz C. American Geophysical Union. Washington. D.C. 1986. P. 259–267.
- 11. Anderson J.G. Implication of attenuation for studies of the earthquake source // Earthquakes Source Mechanics / Eds Das S., Boatwright J., Scholz C. American Geophysical Union. Washington. D.C. 1986. P. 311-319.

- 2. Горельчик В.И., Чубарова О.С., Гарбузова В.Т. Сей- 12. Anderson J.G., Hough S.E. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies // Bull. Seismol. Soc. Amer. 1984. Vol. 74. № 5. P. 1969–1994.
 - Castro R.R., Anderson J. G., Singh. S.K. Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone // Bull. Seismol. Soc. Amer. 1990. Vol. 80. № 6. P. 1481–1503.
 - Chouet B. Volcano Seismology // Pure Appl. Geophys. 2003. Vol. 160. № 2. P. 739-788.
 - Boatwright J. Characteristics of the aftershock sequence of the Borah Peak, Idaho, earthquake, determined from digital recordings of the events $\ /\!/\$ Bull. Seismol. Soc. Amer. 1985. Vol. 75. № 3. P. 1265-1284.
 - Boatwright J., Fletcher J.B., Fumal T.E. A general inversion scheme for source, site and propagation characteristics using multiply recorded sets of moderatesized earthquakes // Bull. Seismol. Soc. Amer. 1991. Vol. 81. № 5. P. 1754–1782.
 - Brune J. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res. 1970. Vol. 75. № 6. P. 4997–5009.
 - Centamore C., Montalto A., Patane G. Self-similarity and scaling relations for microearthquakes at Mt. Etna volcano (Italy) // Physics of the Earth and Planetary Interiors. 1997. Vol. 103. P. 165-177.
 - Hough S. E., Anderson J. G. J. Brune et al. Attenuation near Anza, California // Bull. Seismol. Soc. Amer. 1988. Vol. 78. № 2. P. 672-691.
 - Patane G., Coco G., Carrao M., Imposa S., Montalto A. Sourse parameters of seismic events at Mount Etna volcano, during the outburst of the 1991-1993 eruption // Physics of the Earth and Planetary Interiors. 1995. Vol. 89. P. 149-162.