

УДК 551.242 (571.65)

Н. В. Цуканов

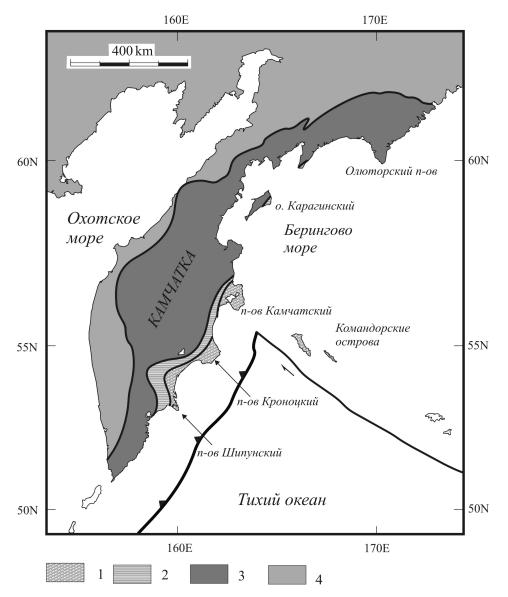
Институт океанологии им. П.П. Ширшова РАН, Москва, 124 997; e-mail: nvts_ov@rambler.ru

Кроноцкая вулканическая палеодуга: особенности строения и состава магматических комплексов

В пределах Восточных полуостровов Камчатки распространены тектоно-стратиграфические комплексы, формировавшиеся в пределах Кроноцкой палеодуги позднемелового и палеоцен-эоценового возраста. Кроноцкая палеодуга была аккретирована к Камчатской окраине северо-восточной Азии в кайнозойское время, что явилось последним коллизионным событием в формировании современной структуры Камчатки. В работе анализируется строение и состав магматических комплексов, сформированных в активные этапы развития палеодуги. Выявлена продольная гетерогенность в составе верхнемеловых магматических комплексов в разных сегментах палеодуги и практическое отсутствие таковой для эоценовых магматических комплексов. Геохимические и изотопные данные по изученным породам свидетельствуют, что они формировались из обедненного мантийного источника в пределах энсиматической вулканической дуги.

Введение

В строении Корякско-Камчатской континентальной окраины выделяется несколько тектоно-стратиграфических террейнов островодужной природы, которые отражают этапы аккреции в северо-западном обрамлении Тихого океана (рис. 1). Кроноцкий террейн островодужной природы является самым поздним из аккретированных островодужных террейнов [4, 6, 8, 16]. Фрагменты этого террейна обнажаются в пределах Восточных полуостровов Камчатки (п-ова Камчатский Мыс (Камчатский), Кроноцкий, Шипунский) и представлены верхнемеловыми и палеоцен-эоценовыми магматическими и туфогенно-осадочными комплексами. Они перекрыты терригенными прибрежно-морскими отложениями олигоцен-миоценового возраста и вулканитами Восточно-Камчатского вулканического пояса [3]. Большинство исследователей считает, что эти комплексы формировались в пределах Кроноцкой дуги, которая развивалась как единая структура с позднего мела по средний эоцен [4, 8, 16]. При этом верхнемеловые образования слагают преимущественно тектонические пластины в аккреционной структуре восточных полуостровов Камчатки и представлены различными по возрасту и химическому составу породами, а маастрихт — датские и палеоцен эоценовые образования слагают преимущественно мощные (до нескольких километров) слабо деформированные разрезы. Новые данные по строению, возрасту и геохимическому составу магматических пород, слагающих различные сегменты Кроноцкой палеодуги, позволяют охарактеризовать активный вулканический этап её развития, провести сравнительный анализ тектоно-стратиграфических комплексов развитых в различных сегментах палео-


дуги и восстановить геодинамические условия их формирования.

Строение и состав магматических комплексов

Восточные п-ова Камчатки имеют неоднородное геологическое строение и сложены преимущественно верхнемеловыми и палеоцен — эоценовыми магматическими и туфогенно — осадочными комплексами. На п-ове Камчатский Мыс изученные магматические образования относятся к трем возрастным интервалам K_2 st-m, K_2 m2 и P_2 . Сантон — маастрихтские образования участвуют в строении тектонической пластины в структуре аккреционной призмы в южной части п-ова. Породы K_2 m2 (нижнетарховская подсвита) и P_2 (каменогорская и баклановская свиты) участвуют в строении столбовской серии, развитой преимущественно в центральной и северной частях п-ова [1, 2].

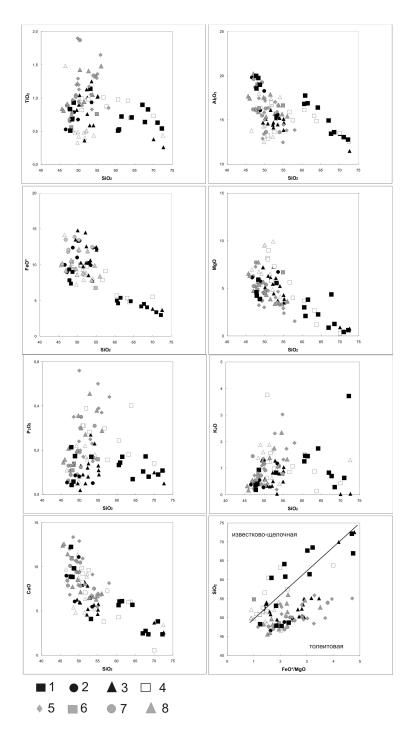
В пределах Кроноцкого п-ва изученные магматические породы приурочены к двум возрастным уровням: K_2 k-km-m (каменистская свита) и P_2 (кроноцкая серия). Образования каменистской свиты развиты ограниченно в восточной части п-ова и слагают антиклинальную складку нарушенную надвигами с зонами серпентинитового меланжа [3, 9]. Магматические и туфогенно-осадочные породы кроноцкой серии занимают практически всю остальную часть п-ова и представлены полого залегающими пачками пород, нарушенных сбросами и крутопадающими надвигами.

В районе Шипунского п-ова изученные образования слагают п-ов Мыс Налычева (налычевская толща (K_2m_2 – P_1d) и Шипунский п-ов: шипунская толща (K_2 km-m? P_1 ?) и кроноцкая серия (P_2). Толщи смяты в складки или слагают пакеты моноклинального залегания нарушенные субвертикальными раз-

Рис. 1. Схема террейнов Камчатки. 1 — Кроноцкий террейн; 2 — Ветловский террейн; 3 — Ачайваям — Валагинский террейн; 4 — окраина Азиатского континента.

ломами. На Шипунском п-ове картируется крупный интрузивный массив габбро-диоритового состава (по данным [6] имеющий возраст 40–44 млн л.).

На п-ове Камчатский Мыс K_2 st-m (толща р. Непропускового) и K_2 m₂ (нижнетарховская подсвита) вулканиты представлены толеитовой дифференцированной серией пород от базальтов, андезито-базальтов до риолитов [14]. Эоценовые вулканиты столбовской серии относятся к слабо дифференцированной серии и представлены преимущественно базальтами, а также гипабиссальными субвулканическими телами габбро и дайками долеритов [11, 12]. На дискриминационной диаграмме петрогенных элементов практически все относительно слабо изменённые породы попадают в поле низкокалиевой толеитовой серии (рис. 2). Среди меловых пород выделяются несколько групп вулканитов, характеризующих различную степень дифференциации изученных пород.


Кислые породы являются наиболее дифференцированным членам расплавов.

магматические породы тарховской свиты (K_2m_2) На п-ове Камчатский Мыс K_2 st-m (толща р. Непрокового) и K_2m_2 (нижнетарховская подсвита) вулиты представлены толеитовой дифференциронной серией пород от базальтов, андезито-базальза до риолитов [14]. Эоценовые вулканиты столбов-

Эоценовые магматические породы столбовской серии преимущественно представлены высокоглино-зёмистыми разностями (al' = 1,03-1,38), реже встречаются умеренно глинозёмистые (al' < 1). Для обоих типов свойственны низкие концентрации P_2O_5 и несколько повышенные содержания K_2O .

Абсолютные концентрации редкоземельных элементов находятся в среднем на уровне 10 хондритовых норм. Спектры распределения РЗЭ имеют вид, характерный для вулканитов толеитовой серии

Н. В. Цуканов

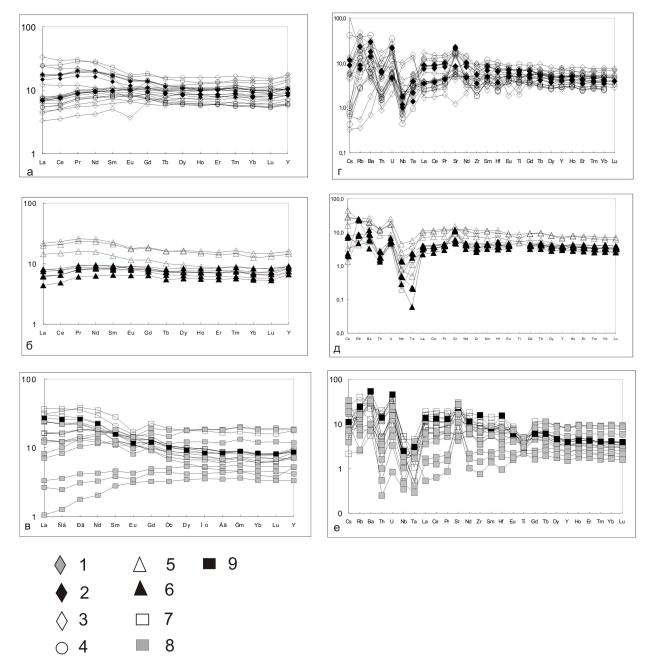


Рис. 2. Вариационные диаграммы петрогенных элементов в магматических породах Кроноцкого террейна. Изученные образцы: 1- шипунской толщи; 2- каменистовской свиты; 3- толщи р. Непропускового; 4- налычевской толщи; 5- столбовской серии; 6-7- кроноцкой серии (6- Шипунский п-ов, 7- Кроноцкий п-ов); 8- каменогорской и баклановской свит.

(рис. 3a). Спайдер-диаграмма имеет типоморфные признаки островодужных вулканитов: отчётливо выраженную глубокую отрицательную аномалию в области ниобия и тантала и высокие концентрации LILE за исключением риолита (рис. 3г). У него наблюдается положительная аномалия в области ниобия, тантала и урана и низкие значения LILE.

На Кроноцком полуострове изученные верхнемеловые магматические породы по всем петро-гео-

химическим параметрам близки к эоценовым вулканитам (рис. 2). Они подразделяются на два типа: высокоглинозёмистые и железистые, которые являются дифференциатами первых [11, 10]. Для обоих типов свойственны низкие концентрации K_2O и P_2O_5 , высокоглинозёмистые разности характеризуются повышенными содержаниями Al_2O_3 и CaO, а железистые повышенным содержанием оксидов FeO и TiO_2 .

Рис. 3. Спектры распределения РЗЭ (а-в) и мультиэлементные диаграммы (г-е) изученных магматических пород: а, г — п-ов Камчатский; б, д — Кроноцкий п-ов; в, е — Шипунский п-ов. На диаграммах показаны фигуративные точки пород: 1 — тарховской свиты; 2 — толщи руч. Непропускового; 3—4 столбовской серии: 3 — габбро, 4 — базальты и долериты; 5 — кроноцкой серии; 6 — каменистовской свиты; 7 — налычевской толщи; 8 — шипунской толщи; 9 — шипунский массив (диорит). Нормирование по составу хондрита по [18], примитивной мантии — по [22].

По геохимическим параметрам эти два типа не отличаются друг от друга. Для них характерны низкие концентрации РЗЭ с распределением близким к хондритовому при незначительном обеднением лёгких РЗЭ относительно средних и тяжёлых (рис. 36), что характерно для производных толеитовых расплавов. Спайдер-диаграммы также имеют типоморфные признаки островодужного магматизма: глубокие минимумы высокозарядных элементов (HFSE): Nb, Ta, Zr, Ti и более высокие относительно

РЗЭ концентрации крупнойонных несовместимых элементов (LILE): K, Ba, U, Rb (рис. 3д). На спайдер-диаграммах также наблюдается минимум Th, а у высокоглинозёмистых разностей и интенсивный максимум Sr.

Вулканиты Шипунского п-ова в южном сегменте Кроноцкой палеодуги отличаются по составу от магматических пород северных сегментов. Все изученные магматические породы п-ова Мыс Налычева характеризуются низкими содер-

149 Н. В. Циканов

рывную дифференцированную серию от базаль- Шипунского п-ова имеют относительно низкие знатов до дацитов, что хорошо видно на вариационных диаграммах SiO₂-элемент (рис. 2). Вулканиты единой серии на диаграммах FeO/MgO-SiO₂ и SiO₂-K₂O располагаются в поле низкокалиевой толеитовой и умереннокалиевой известково-щелочной серий [15]. По строению и составу образования развитые на юго-восточном борту бух. Бечевинской, южная часть п-ова Шипунский, близки к магматическим комплексам п-ова Мыса Налычева. Магматические породы представлены дифференцированной серией от базальтов до дацитов и риодацитов (SiO₂ — 48-72 вес. %) и имеют низкие содержания титана (0,5-0,9%). Наблюдается хорошая корреляция составов по соотношению железа, магния, алюминия и кальция, с ростом кислотности происходит уменьшение содержаний этих элементов (рис. 2). По глинозёму могут быть выделены две группы пород с высоким содержанием Al_2O_3 (до 17–20%) и средним (до 15-16%). На диаграмме зависимости щёлочности от кремнезёма все изученные породы попадают в поле низкокалиевой толеитовой и умереннокалиевой известково-щелочной серий. Это находит отражение в распределении редких и редкоземельных элементов (рис. 3в). Часть пород (обр. 2010-5/1 и 2010-1/1 с левого борта бухты Бечевинской) имеют типичные для известково-щелочной серии пород распределение РЗЭ; резкий рост концентраций от тяжёлых элементов к легким. Для остальных пород характерно толеитовое распределение РЗЭ, но они характеризуются несколько повышенными значениями средних и тяжёлых элементов. На мультиэлементной диаграмме для большинства изученных пород характерны Nb-Ta минимумы. Для всех известково-щелочных разностей характерна резкая положительная аномалия стронция. Представители известково-щелочной серии имеют повышенные концентрации LILE (рис. 3е).

Для определения геодинамической обстановки формирования изученных пород была использована диаграмма соотношения Th/Yb-Ta/Yb по [21] (рис. 4а). Все изученные породы попадают в поле пород океанических дуг, образованных из обедненного мантийного источника. Образцы изученных пород верхнемеловой толщи р. Непропускового, эоценовые магматические породы столбовской серии п-ова Камчатский Мыс и верхнемеловые образования Кроноцкого п-ова и шипунской толщи Шипунского п-ова располагаются преимущественно в поле толеитовой серии. А изученные образцы из эоценовой кроноцкой серии Кроноцкого п-ова и маастрихт-палеоценовые породы налычевской толщи п-ова Мыс Налычева располагаются вблизи границы полей толеитовой и известково-щелочной серий (рис. 4а).

На диаграмме соотношения Ba/Zr-Th/Zr по [19], наблюдается различие между магматическими породами п-овов Камчатский Мыс, Кроноцкий и Шипунский (рис. 46). Эоценовые образования п-ова Кам-

жаниями TiO₂ (0,54-1,03%). Они образуют непре- чатский Мыс и верхнемеловой шипунской толщи чения Th/Zr и фигуративные точки вытягиваются вдоль вектора, указывающего на привнос флюида при плавлении метаморфизованной океанической коры. В то время как для эоценовых пород Кроноцкого п-ова и маастрихт — палеоценовых пород Шипунского п-ова характерны относительно низкие значения Ba/Zr, и фигуративные точки составов пород вытягиваются вдоль вектора, указывающего на попадания в зону плавления осадков.

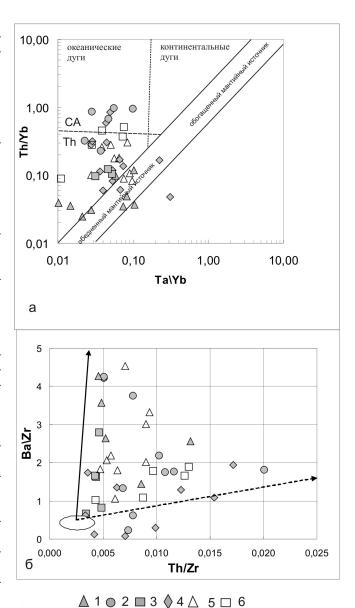


Рис. 4. Геохимические зависимости составов магматических пород Кроноцкого террейна: диаграмма (а) по [20] и (б) по [19]. На диаграммах фигуративные точки составов пород: 1 — шипунской толщи; 2 налычевской толщи 3 — каменистовской свиты; 4 — толщи р. Непропускового; 5 — каменогорской и баклановской свит; 6 — кроноцкой серии.

Результаты изотопных исследований показали [13], что изученные нами породы, представляющие различные сегменты Кроноцкой палеодуги, не имеют существенных различий в изотопном составе. Большая часть фигуративных точек изотопных соотношений изученных пород на вариационных диаграммах (¹⁴³Nd/¹⁴⁴Nd-⁸⁷Sr/⁸⁶Sr; 207 Pb/ 204 Pb- 206 Pb/ 204 Pb: 208 Pb/ 204 Pb- 206 Pb/ 204 Pb) попадают в поле составов базальтов океанических хребтов и в поле Гавайских вулканитов. Изотопные параметры наиболее представительной группы проанализированных образцов практически всех сегментов палеодуги, свидетельствуют о том, что их первичные расплавы генерировались в мантийном источнике типа DMM, в надсубдукционном клине деплетированной верхней мантии. Для базальта тарховской свиты п-ва Камчатский Мыс отмечается повышенное значение радиогенного стронция $(^{87}{
m Sr}/^{86}{
m Sr}=0{,}704)$ и пониженные значения $(^{143}\text{Nd}/^{144}\text{Nd} = 0.513)$ по отношению к другим изученным породам. Такие особенности изотопного состава базальта могут быть объяснены тем, что в зону магмогенерации к деплетированной мантии было привнесено вещество обогащённых мантийных источников ЕМ1 и ЕМ2. Так как изотопные составы изученных базальтов близки к составам вулканитов Гавайских островов, можно предположить, что это заражение обогащенным веществом могло произойти под воздействием гавайского плюма, когда плита находилась в зоне его влияния. Изотопный состав эоценовых пород Кроноцкого п-ова показывают, что для них, в отличие от верхнемеловых пород, характерен более радиогенный состав изотопов свинца (206 Pb/ 204 Pb = 18,329 - 18,578 $\mu^{208} Pb/^{204} Pb = 15,556 - 15,575$), что хорошо коррелирует с распределением изученных пород на диаграмме Th/Zr-Ba/Zr.

Обсуждение результатов исследования

Проведённые исследования показывают, что во всех сегментах Кроноцкой палеодуги (п-ова Камчатский мыс, Кроноцкий и Шипунский) активный вулканизм начался в сантон — кампанское время. При этом эоценовые магматические комплексы широко распространены во всех сегментах дуги (столбовская и кроноцкая серии) и имеют сходные геохимические характеристики, а маастрихт-датские и сантон-маастрихтские комплексы слагают отдельные выходы или тектонические пластины в покровно-складчатой структуре п-овов и характеризуются значительными вариациями химических составов пород. Полученные данные показывают продольную гетерогенность вдоль простирания дуги в составе верхнемеловых магматических комплексов и практическое отсутствие таковой для эоценовых магматических комплексов в разных сегментах палеодуги. Верхнемеловые магматические комплексы северного сегмента представлены преимущественно породами толеитовой дифференцированной серии (толща р. Непропускового, п-ов Камчатский Мыс), среднего сегмента - высокоглинозёмистой толеитовой серией (каменистовская свита, Кроноцкий п-ов) и южного сегмента как низкокалиевой толеитовой, так и умеренно-калиевой известково-щелочной серией (налычевская и шипунская толщи, п-ова Мыс Налычева и южная часть п-ова Шипунский). В тоже время геохимические и изотопные данные по изученным породам свидетельствуют, что они формировались из обедненного мантийного источника в пределах энсиматической палеодуги (Кроноцкая вулканическая дуга). Кинематические реконструкции для Северо-Западной части Тихого океана показывают [7, 16, 17, 20], что до эоценового времени происходила субдукция плиты Кула, а после поглощения в зоне субдукции спредингового хребта, разделявшего плиты Кула и Тихоокеанскую, стала субдуцироваться Тихоокеанская плита. Различия в составе верхнемеловых комплексов различных сегментов палеодуги могут быть объяснены неоднородностью состава субдуцировавшейся плиты Кула и, или различиями в геодинамическом режима в зоне плавления. Однородность эоценового вулканизма на всём протяжении палеодуги, возможно, указывает на поглощение спредингового хребта Кула-Тихоокеанская до этого этапа и на начало субдукции Тихоокеанской плиты на всём протяжении Кроноцкой дуги. После чего условия магмогенерации в мантийном клине стали соответствовать условиям выплавления высокоглинозёмистых толеитов, которые, по-видимому, являлись фоновыми для данного участка этой плиты. Наблюдаемые некоторые различия в составе эоценовых пород п-овов Камчатский Мыс и Кроноцкий, вероятно, обусловлены различиями во флюидном режиме. Так для образований столбовской серии, вероятно, источником флюида служило плавление измененной океанической коры, а при формировании пород кроноцкой серии определённую роль играло плавление осадочного материала.

Полученные нами новые данные о возрасте и химическом составе мел-палеоценовых комплексов южного сегмента Кроноцкой палеодуги позволяют поставить вопрос о сложном сочленении палеодуг Восточной Камчатки (Ачайваям-Валагинская и Кроноцкая) в позднемеловое — раннепалеоценовое время. Проявление позднемелового — палеоценового известково-щелочного магматизма в пределах Шипунского сегмента Кроноцкой палеодуги, сходного с таковым для Ачайваям-Валагинской палеодуги, позволяет высказать предположение, что этот сегмент мог первоначально входить в состав Ачайваям-Валагинской палеодуги, а после её коллизии с Камчатской окраиной в палеоцене, являться основанием для эоценовой Кроноцкой палеодуги.

Выволы

Начало проявления островодужного вулканизма в различных сегментах Кроноцкой палеодуги датируется сантон— кампанским временем. Оконча-

ние активной стадии вулканизма во всех сегментах датируется эоценовым временем.

Позднемеловые магматические комплексы северного и среднего сегментов являются производными толеитовой и высокоглинозёмистой толеитовой островодужных серий, для южного сегмента характерен известково-щелочной вулканизм. Эоценовые магматические комплексы во всех сегментах формировались из высокоглинозёмистых толеитовых расплавов

Геохимические и изотопные данные показывают, 12. что верхнемеловые — эоценовые комплексы Кроноцкой палеодуги близки друг к другу и преимущественно генерировались в надсубдукционном клине из деплетированного мантийного источника и фор- 13. мировались в пределах энсиматической палеодуги.

Работа выполнена при финансовой поддержки РФФИ, грант (11-05-00 086).

Список литературы

- 1. Бояринова М.Е. Государственная геологическая карта Российской Федерации масштаба 1:200 000. Восточно-Камчатская серия, листы О-58-XXVI, XXXI, XXXII. 15. СПб.: ВСЕГЕИ. 2007.
- Бояринова М. Е., Вешняков Н. А., Коркин А. Г., Савельев Д. П. Государственная геологическая карта Российской Федерации масштаба 1: 200 000. Изд. 2-е. Серия Восточно-Камчатская. Лист О⁻ 58-XXVI, XXXI, XXXII (Усть-Камчатск). Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2007. 226 с.
- 3. Государственная геологическая карта Российской Фе- 17. дерации. Лист N-57. Масштаб 1:1 000 000 / Гл. редакторы: Литвинов А.Ф., Марковский Б. А. СПб.: ВСЕГЕИ, 2006.
- 4. Зинкевич В.П., Константиновская Е.А., Цуканов Н.В. и ∂p . Аккреционная тектоника Восточной Камчатки. М.: Наука, 1993. 272 с.
- 5. Коваленко Д.В. Палеомагнетизм геологических комплексов Камчатки и Южной Корякии. Тектоническая и геофизическая интерпретация. М.: Научный мир, 2003, 256 с.
- 6. Колосков А.В., Коваленко Д.В. Новые возрастные да- 20. тировки проявления Кайнозойского магматизма на Камчатке // Вестник КРАУНЦ, Науки о Земле. 2009. № 1. 21. Вып. 13. С. 83–88.
- 7. Кононов М.В. Тектоника плит северо-запада Тихого океана. М.: Наука, 1989, 169 с.
- Левашова Н.М., Шапиро М.Н., Беньямовский В.Н., Баженов М.Л. Реконструкция тектонической эволюции Кроноцкой островной дуги (Камчатка) по палеомагнитным и геологическим данным // Геотектоника. 2000. № 2. С. 65–84.

9. Разницин Ю. Н., Хубуная С. А., Цуканов Н. В. Тектоника Восточной части Кроноцкого п-ова и фомационная принадлежность базальтов (Камчатка) // Геотектоника. 1985. № 1. С. 88–101.

- 10. Сколотнев С.Г., Цуканов Н.В., Савельев Д.П., Федориук А.В. О гетерогенности составов островодужных образований Кроноцкого и Камчатскомысского сегментов Кроноцкой палеодуги (Камчатка) // Докл. РАН. 2008. Том. 418. № 2. С. 232–236.
- 11. *Хубуная С.А*. Высокоглинозёмистая плагиотолеитовая формация островных дуг. М.: Наука, 1987. 167 с.
- 12. *Цуканов Н.В.* Эоценовый магматизм северного сегмента Кроноцкой палеодуги (п-ов Камчатский Мыс, Камчатка). // Вестник КРАУНЦ, Науки о Земле. 2013. № 1. Вып. 21. С. 25–33.
- 13. Цуканов Н.В., Сколотнев С. Γ . Новые данные по изотопному составу магматических комплексов палеодуг Восточной Камчатки // ДАН РАН. 2010. Том. 434. № 5. С. 656–660
- 14. Цуканов Н. В., Сколотнев С. Г., Палечек Т. Н. Новые данные о составе и строении аккреционной призмы п-ова Камчатский (Восточная Камчатка). Вестник КРАУНЦ. Науки о Земле 2008, № 2. Вып 12. С. 42–50.
- 15. Цуканов Н. В., Сколотнев С. Г., Савельев Д. П. Новые данные о составе и строении вулканических комплексов мыса Налычева и п-ова Шипунский (Камчатка) // Вулканология и Сейсмология. 2009. № 1. С. 21–30.
- 16. *Шапиро М.Н.*, *Соловьев А.В.* Кинематическая модель формирования Олюторско-Камчатской складчатой области // Геология и Геофизика. 2009. Том. 50. № 8. С. 863–880.
- Engebretson D.G., Cox A., Gordon R.G. Relative motions between oceanic and continental plates in the Pacifi c Basin // Geol. Soc. Amer. Spec. Paper, 1985, Vol. 206, 59 p.
- 18. Evensen N.M., Hamilton P.J., O'Nions R.K. Rare earth abundances in chondritic meteorites // Geochim. et Cosmochim. Acta. 1978. Vol. 42. P. 1199–1212.
- Ishuzuka O., Taylor R. N., Milton A., Nesbitt R. W. Fluidmantle interaction in an intra-oceanic arc: constraints from highprecision Pb isotopes. // Earth Planet Sci Lett. 2003. Vol. 211. P. 221–236
- Norton I.O. Plate motion in the North Pacific: the 43
 Ma Nonevent // Tectonics, 1995, Vol. 14, P. 1080-1094.
- 21. Pearce J. A. Role of the sub-continental lithosphere I magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds). Continental Basalts and Mantle Xenoliths. Shiva Press, Natwich. 1983. P. 230-249
- Sun S. S., McDonough W. F. Chemical and isotopic systimatics of oceanic basalts: Implications for mantle composition and processes // Geol. Soc. Amer. Spec. Publ. 1989. Vol. 42. P. 313–345.

Секция II

Геодинамика зоны перехода океан-континент: геофизические исследования в областях современного и четвертичного вулканизма, природные катастрофы.