

УДК 551.214

В. И. Андреев¹, О. М. Топчиева²

Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский е-тай

Гора Поворотная — фрагмент стратовулкана, расположенного к северо-востоку от вулкана Плоский Толбачик

Приведены геологические, минералого-петрографические характеристики горы Поворотной, являющейся фрагментом древнего стратовулкана. Сделана реконструкция истории развития объекта исследования.

Введение

Гора Поворотная расположена к северо-востоку от вулкана Плоский Толбачик на абсолютной высоте ~ 1500 м, её относительная высота ~ 200 м, объём $\sim 0.5 \text{ км}^3$. В плане г. Поворотная образует подобие четырехугольной звезды, чем отличается от множества расположенных в окрестностях Толбачинских вулканов моногенных шлако-лавовых конусов (рис. 1). Повышенный интерес к горе Поворотной связан с тем, что в течение короткого, даже в историческом масштабе времени, происходит уже третье извержение в окрестностях Толбачинских вулканов (первое -1941 г., второе -1975-76гг., третье — 2012–13 гг.). Поэтому исследование строения, состава, истории развития и генезиса горы Поворотной представляются заслуживающим внимания.

Строение г. Поворотной

В строении г. Поворотной выделяется один лавово-пирокластический комплекс, представленный четырьмя толщами; пачкой вулканогенно-осадочных пород (кратерно-озёрных) и субвулканическим комплексом (?).

Нижняя лавово-пирокластическая толща представлена девятью потоками пироксеновых андезибазальтов, переслаивающимися с пирокластическими потоками. Видимая мощность толщи $\sim 45 \, \mathrm{M}$, коэффициент эксплозивности 50%, падение северное, $\angle 30^\circ$.

Выше залегает пирокластическая толща мощностью ~ 50 м. Нижние горизонты сложены лапилливыми туфами, сменяющимися вверх по разрезу агломератовыми туфами. Цемент гравийный.

На этой пирокластической толще расположена вторая лавово-пирокластическая толща, включающая 14 андезибазальтовых лавовых потоков переслаивающихся с пирокластикой. Мощность толщи порядка $40\,\mathrm{m}$, падение северо-западное, $\angle 10-15^\circ$.

Выше расположена толща из восьми потоков стекловатых пироксеновых андезибазальтов, переслаивающихся с пирокластикой. Мощность верхней толщи и её отдельных потоков не выдержана. Средняя мощность толщи ~ 100 м. На северном склоне падение верхнего потока северное, $\angle 3^{\circ}$, на восточном и южном юго-западное, \angle до 10° .

На вершине горы Поворотной встречены развалы темных стекловатых обломков вулканических бомб.

Предполагаемый субвулканический комплекс представлен пятью параллельными дайками, рассекающими северо-западный отрог горы Поворотной на высоте $\sim 1550\,\mathrm{m}$. Дайки сложены пироксеновыми габбро, обладают тонкоплитчатой отдельностью. Простирание даек 105° , падение вертикальное. Расстояние между дайками с юго-запада на северо-восток — $50-40-60-100\,\mathrm{m}$. Мощность даек $5-7\,\mathrm{m}$. Самая мощная (средняя) образует в рельефе скалу высотой 4 м. Мощность её в верхней части немного увеличивается.

Вулканогенно-осадочная пачка представлена прислоненными к склону гидротермально-изменёнными пестроцветными породами, песчаниками и алевритами, развитыми на северном склоне горы Поворотной. Эти породы резко выклиниваются к востоку и западу. Падение пород пачки северное, $\angle 10-15^\circ$, на северном склоне наблюдаются горизонтальные борозды глубиной 3–6 см, возникшие, очевидно, в результате водной эрозии. На обнажении мощностью 0,5 м насчитывается восемь подобных борозд. Общая мощность (по склону) вулканогенно-осадочной пачки порядка 15 м.

Гора Поворотная окружена глыбовыми потоками (курумником) мезоплагиафировых лав ареальных конусов, под которыми просматриваются не расчлененные терминальные лавовые потоки Плоского Толбачика, налегающие на подножье Поворотной.

В структурном отношении гора Поворотная приурочена к месту пересечения двух крупных разломов линейного простирания: 1) р. Студеная —

² Камчатский государственный университет имени Витуса Беринга

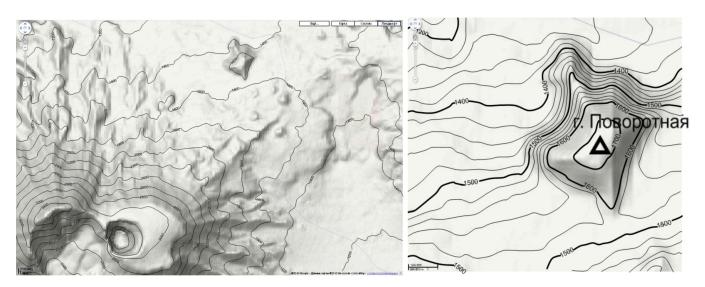


Рис. 1. Гора Поворотная к северо-востоку от вулкана Плоский Толбачик.

р. Плотина — р. Сухая Хапица; 2) перевал между вулканами Ключевским и Ушковским — граница вулканов Острого и Плоского Толбачиков.

Второй разлом менее выражен по сравнению с первым. В опубликованной работе [9] приведено множество разломов, выделенных многими авторами, исследовавшими Ключевскую группу вулканов.

Химический состав пород, слагающих гору Поворотную

Породы, слагающие гору Поворотную представлены базальтами, андезибазальтами, трахиандезитами и габбро (таблица). Для базальтов и андезибазальтов характерно немного повышенное содержание ТіО2, что свойственно базальтам Острого и Плоского Толбачика [5], относящимся к известково-щелочным породам. Выделяются по высокому содержанию MgO — 10,87% габброидные породы субвулканического комплекса (?) и трахиандезиты — $SiO_2 - 58,6\%$, по повышенному содержанию $K_2O -$ 3,43%, представленные осколками вулканических бомб. В пестроцветных образованиях вулканогенно-осадочной пачки (песчаниках и алевритах) отмечено преобладание $Fe_2O_3 - 5,37\%$ над FeO - 3,89%, что не характерно для неизменённых вулканогенных пород. Содержание H_2O^+ в этих породах составляет 2,53%. Эти признаки убедительно показывают, что данные породы подверглись гидротермальному изменению.

Содержание и распределение радиоактивных элементов в породах, слагающих гору Поворотную в общих чертах соответствует химическому составу и генезису этих пород. При этом трахиандезиты обладают повышенным содержанием и неравномерным распределением радиоактивных элементов [2, 3].

Количественно-минеральный состав и микроструктура пород

Среди пород, слагающую г. Поворотную, можно выделить три группы: 1) базальты и андезибазальты, 2) габбро, 3) андезиты.

Базальты и андезибазальты - это плотные тёмные стекловатые лавы, иногда имеющую плитчатую, обычно глыбовую отдельность. Породы пирокластических потоков по микроструктуре существенно не отличаются от лав.

Структура пород серийно-порфировая. Структура основной массы базальтов и андезибазальтов интерсертальная, гиалопилитовая, редко пилотакситовая. Фенокристаллы представлены плагиоклазом, пироксенами, оливином и развивающимся по нему хризотилом, реже хлоритом и рудными минералами [4, 5].

 $Cpe\partial u$ фенокристаллов плагиоклаза можно выделить три генерации:

- 1. Корродированные табличатые кристаллы с концентрически расположенными микровключениями стекла. Размер кристаллов 1,2-0,8 мм.
- 2. Лейстовидные кристаллы, обычно с полисинтетическими двойниками. Размер 0.6–0.4 мм.
- 3. Таблитчатые кристаллы, свежие, обычно не обнаруживают двойникового строения. Размер $0.3-0.2\,\mathrm{mm}$.

Фенокристаллы 1-й генерации обычно содержат Ап-молекул на 5-7% больше, чем второй, и на 10-12% больше, чем фенокристаллы третьей генерации.

Моноклинный пироксен образует изометричные фенокристаллы размером $0,3-0,8\,\mathrm{mm}$. Состав моноклинных пироксенов, определённый на диаграмме Веселовской колеблется в пределах: Ca -29-31%, Mg -47-48%, Fe -22-23%.

Ромбический пироксен наблюдается в длиннопризматических кристаллах размеров 0,5-0,2 мм. Плеохроизм по Ng — светло-зелёный, Np — светло-розовый. Состав ромбического пироксена меняется от 18 до 26% FeSiO₃.

Оливин встречается в виде корродированных ксеноморфных кристаллов, обычно окруженных опацитовой или хризотиловой каймой с кристалла-

Химический состав пород г. Поворотная (вес. %).

Компоненты	Нижняя лавово-пирокла- стическая толща		Верхняя лавово-пиро- кластическая толща	Вершина горы (развалы)	Вулканогенно- осадочная пачка	Субвулкани- ческий комплекс (?)
	андезиба- зальт	базальт	трахиандезит	трахиандезит	базальт	габбро-пор- фирит
SiO_2	52,4	49,72	54,74	58,62	49,59	51,3
${ m TiO_2}$	1,05	1,13	1,2	1,15	1,12	1
$\mathrm{Al_2O_3}$	15,6	17,67	18,28	16,4	16,39	14,8
$\mathrm{Fe_2O_3}$	3,79	3,99	3,14	2,13	5,37	3,13
FeO	5	5,57	4,23	4,81	3,89	5,04
MnO	0,14	0,16	0,15	0,19	0,17	0,14
MgO	6,45	6,05	3,33	2,16	7,5	10,87
CaO	8,58	9,22	7,61	5,64	8,93	9,1
$\mathrm{Na_2O}$	3,14	2,94	4,77	4,55	2,5	3,24
K_2O	1,46	1,47	1,8	3,43	1,02	1,54
$\mathrm{H_2O}^{\text{-}}$	0,1	0,86	0,16	0	1,1	0,1
$\mathrm{H_2O}^+$	1,87	0,5	0,61	0,55	2,53	0,31
$\mathrm{P}_2\mathrm{O}_5$	0,32	0,34	0,14	0,19	0,27	0,13
\sum	99,9	99,65	100,08	99,82	100,37	100,7
Th*	_**	_	_	1,8	_	-
U*	0,8***	_	_	4 (8***)	_	1,6***

Примечания: * — торий и уран в г/т; ** — не определялось; *** — трековый метод.

ми рудных минералов. Размер кристаллов оливина $0.1-0.4\,\mathrm{mm}$.

Хризотил встречается в реакционной кайме вокруг кристаллов оливинов и пироксенов, часто полностью замещает эти кристаллы. Цвет бледно-зелёный и жёлто-зелёный; плеохроизм отсутствует. Иногда наблюдаются петельчатое строение. При скрещённых николях хризотил обычно выглядит как изотропный минерал. Описанный минерал определён как хризотил по морфологии, отсутствию плеохроизма, кажущейся изотропности в поляризованном свете и парагенетическим признакам. Для однозначного определения необходимо провести дальнейшие исследования.

Xлорит наблюдается в реакционных каемках по пироксенам и оливинам, часто встречается в ксеноморфных кристаллах. Плеохроизм Ng- зелёный, Np-жёлто-зелёный.

Рудные минералы по форме кристаллов и приуроченности к границам кристаллов оливинов и пироксенов в виде каймы можно отнести к магнетитам, титаномагнетитам.

Габбро - тёмно-серые полнокристаллические породы. Структура пород долеритовая. Количественно-минералогический состав габбро (в %): плагиоклаз — 77,0; пироксен — 10,1; оливин — 9,0; хризотил — 2,4; рудный минерал — 1,5.

Плагиоклаз представлен лейстовидными гипидиморфными кристаллами размером 0,4-0,6 мм. Часто кристаллы плагиоклаза зональны, зональность обычно ритмичная. Состав — 36-85% An, обычно 55-60%.

 $\Pi upoксен$ преимущественно ромбический, форма кристаллов призматическая, плеохроизм по обычной схеме, $FeSiO_3-20-25\%$.

Моноклинный пироксен образует многоугольные или каплевидные кристаллы размером 0.2-0.3 мм. С: $Ng=40-42^{\circ}$ Ng-Np=0.020.

Оливин слагает ксеноморфные кристаллы размером 0.2-0.7 мм. С: $Ng=0^{\circ} Ng-Np=0.025$.

Хризотил аналогичен описанию выше.

Рудный минерал подробно не определялся.

Следует отметить большие колебания в составах плагиоклаза и пироксена, не свойственные обычным интрузивным породам. Ритмичную зональность плагиоклазов можно объяснить многостадийным внедрением интрузий (экструзий).

Tрахиандезиты - оскольчатые породы гиалиновой микроструктуры с редкими микрокристаллами плагиоклазов размером в пределах 0,1 мм.

История развития горы Поворотной

Формирование г. Поворотной, очевидно, началось задолго до второго оледенения, происходившего одновременно с опусканием восточной части вулкана Плоский Толбачик и образованием его кальдеры [8].

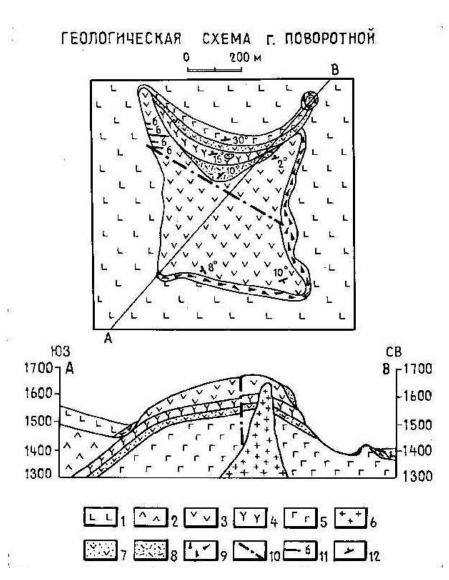


Рис. 2. Геологическое строение г. Поворотной. А – геологическая схема, Б – геологический разрез. Условные обозначения: 1 — лавовые потоки Плоского Толбачика; 2 — более древние лавовые потоки Острого и Плоского Толбачиков; 3 — верхняя лавово-пирокластическая толща; 4 — средняя лавово-пирокластическая толща; 5 — нижняя лавово-пирокластическая толща; 6 — предполагаемый субвулканический комплекс (?); 7 пирокластическая толща; 8 — вулканогенно-осадочная пачка; 9 — брекчии; 10 — линия дислокации; 11 дайки; 12 — элементы залегания.

Формирование трёх лавово-пирокластических, одной пирокластической толщ и одного субвулканического комплекса (?) происходило с перерывами, о чём свидетельствуют заметные угловые несогласия в залегании лавово-пирокластических толщ.

Фундамент Поворотной перекрыт лавами современных ареальных излияний и нерасчленёнными породами поздних извержений Толбачинских вулканов. Поэтому о времени заложения г. Поворотной можно говорить весьма предположительно. При оценке времени образования каждой из толщ горы Поворотной по аналогии с периодами формирования подобных отложений при исторических извержениях можно предположить, что каждая из них формировалась порядка 100 лет. Не меньши- кристаллизация этих пород происходила на неко-

ми по продолжительности были и перерывы между активными периодами.

Появление трахиандезитов, аналогов которым на Толбачинских вулканах нет, также было, очевидно, связано с длительной эволюцией расплава. Продолжительным, видимо, был и период подготовки последнего акта деятельности горы Поворотной — внедрения серии даек магнезиальных габбро. При любых генетических взаимоотношениях высокоглинозёмистых и высокомагнезиальных базальтов [7] между появлением этих разновидностей вулканогенных пород на земную поверхность мог быть существенный перерыв.

Судя по полнокристаллической структуре габбро,

торой глубине. Ориентировочно время заложения г. Поворотной — \mathbb{Q}_{2-3} .

Во время формирования трёх лавово-пирокластических и одной пирокластической толщ преобладающий тип извержения— вулкано-стромболианский, пирокластических комплексов— вулканский.

Осколки бомб на вершине г. Поворотной образовались в заключительную стадию формирования третьей толщи. Пород такого состава (с $3,45\%~\rm{K}_2\rm{O}$ и высокой радиоактивностью) на вулканах Остром и Плоском Толбачиках и ареальных конусах этих вулканах неизвестно [5,10].

Породы вулканогенно-осадочной пачки могли быть сформированы во время существования кратерного озера, типа существующего в настоящее время кратера Троицкого на вулкане Малый Семячик. Если вышеописанные горизонтальные борозды соответствуют годовым колебаниям уровня этого озера, то формирование пород этого комплекса происходило в течение нескольких сотен лет. Впоследствии северная часть кратера была уничтожена эрозией, возможно, ею была частично снесена и южная часть кратера, в таком случае мощность пород вулканогенно-осадочной пачки и время её формирования было значительно больше. О том, что озеро было кратерное, можно судить по сильной степени гидротермального изменения пород вулканогенно-осадочной пачки.

Последним этапом деятельности г. Поворотной явилось, вероятно, внедрение серии даек, а следствием — наличие зонального плагиоклаза в дайках и хризотила в лавах г. Поворотной. Этим объясняется отличный состав пород субвулканического комплекса (?), характеризующийся высоким содержанием магния и полнокристаллическая (долеритовая) микроструктура пород даек этого комплекса. Такая полнокристаллическая микроструктура могла возникнуть, если кристаллизация пород происходила на некоторой глубине. Появлению подобных пород на земной поверхности (или в приповерхностных условиях) могла способствовать продолжительная эрозия.

Особенности строения горы Поворотной и состава слагающих её пород согласуются с вторичными 9. изменениями — серпентинизацией и с образованием хризотила развитого преимущественно в породах 10. субвулканического комплекса. Согласно [1, 4] хризотил-асбест образуется главным образом при воздействии гидротермальных растворов, связанных с интрузиями.

Формирование горы Поворотной, очевидно, было многоактным продолжительным, и её полный объём мог многоактно превышать $1\,\mathrm{km}^3$.

Выводы

- 1. Трахиандезиты горы Поворотной для Толбачинских вулканов необычны.
- 2. Полнокристаллическая структура габбро показывает, что кристаллизация этих пород происходила на некоторой глубине.
- 3. Судя по отложениям слоёв вулканогенно-осадочной пачки кратерное озеро могло существовать достаточно длительное время.
- 4. Вероятно, появление трахиандезитов с повышенным содержанием радиоактивных элементов связано с одним из циклов извержения [2, 3].
- 5. Гора Поворотная соответствует общепринятым представлениям о строении и развитии стратовулкана [6].

Список литературы

- 1. Горная энциклопедия 1984. Том. 1. C. 156 157.
- Андреев В. И. Распределение урана в вулканических продуктах Большого трещинного Толбачинского извержения.- Вулканология и сейсмология, 1979, № 6, С.54-61.
- 3. Андреев В.И. Распределение естественных радиоактивных элементов в твёрдых вулканитах и радиогенных газах из вулканов и гидротерм Камчатки и Курил. Изд-во: КамГу им. Витуса Беринга. 2013. 160 с.
- 4. *Дир У. А., Хауи Р. А., Зусман Дж.* Породообразующие минералы. 1965. Том. 2. 400 с.
- 5. Ермаков В. А., Важеевская А. А. Вулканы Острый и Плоский Толбачик. Бюллетень Вулканол. Станций. 1973. № 49. С. 43 54.
- 6. Лучицкий И.В. Основы палеовулканологии. Современные вулканы. М. «Наука», 1971. 479 с.
- Озеров А. Ю., Арискин А.А., Бармина Г. С. К проблеме генетических взаимоотношений высокоглинозёмистых и высокомагнезиальных базальтов Ключевского вулкана (Камчатка) // Доклады Академии Наук, 1996, Том. 350, № 1, С. 104 — 107.
- Пийп Б. И. Ключевская сопка и её извержения в 1944–1945 гг. и в прошлом. // Труды Лабор. Вулканол. АН СССР, 156, вып. 11. 1956.
- 9. *Сирин А. Н.* О соотношении центрального и ареального вулканизма //М. Наука. 1968. 196 с.
- Флёров Г.Б., Андреев В.Н., Будников В.А. и др. Петрология продуктов извержения. // Кн. Большое трещинное Толбачинское извержение (Камчатка). М. Наука. 1984. С 233–285.