

УДК 549.7+551.231

М. А. Назарова, Л. П. Вергасова, А. А. Овсянников, С. В. Сергеева

> Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006; e-mail: nazarovamar@mail.ru

Изучение фумарольных минералов изоморфного ряда галотрихит-пиккерингит

Приводятся результаты комплексного изучения минеральных новообразований ряда галотрихит-пиккерингит из продуктов фумарольной деятельности одного из Новых Толбачинских вулканов (Первый конус, северный внутренний склон) и вулкана Мутновский (Донное фумарольное поле). Исследуемые новообразования отличались по агрегатному состоянию, условиям образования и химическому составу.

Введение

Новые Толбачинские вулканы образовались в ходе крупнейшего в современную эпоху Курило-Камчатского региона Большого трещинного Толбачинского извержения (БТТИ), происшедшего на Камчатке в 1975–1976 гг. [2]. Первый конус, относящийся к Северной группе Новых Толбачинских вулканов, сформировался в процессе Северного прорыва магнезиальных базальтов в 1975 г. Постэруптивный период Первого конуса сопровождался интенсивной фумарольной деятельностью [5].

Мутновский вулкан — это сложный вулканический массив с мощными фумарольными полями, на которых можно наблюдать разнообразные формы проявления современной фумарольно-сольфатарной деятельности [7].

Минералы ряда галотрихит-пиккерингит — одни из наиболее распространённых минералов на термальных площадках, вблизи сольфатар и на прогретых участках в областях современной вулканической деятельности. Общая формула имеет вид $(Mg, Fe^{2+})(Al, Fe^{3+})_2(SO_4)_4 \cdot 22H_2O$. Мономинеральных скоплений не образует, что затрудняет их диагностику.

Агрегатная форма проявления и условия образования

Соединения водных сульфатов породообразущих элементов Al, Fe, Mg с Первого конуса БТТИ (проба Тол.-102/76) имеют облик скрытокристаллических вспененных новообразований грязно-белого, кремовато-белого цвета (рис. 1). В 1976 г. на северном внутреннем склоне конуса эти новообразования были установлены в виде лёгких сосулек, наростов, цемента в рыхлом шлакопепловом субстрате под коркой, состоящей из преобразованного под воздействием фумарольных газов пирокластического материала конуса, сцементированного новообразованиями, преимущественно, сульфатно-кальциевого состава. Температура поверхности отбора превышала 100° С. Механизм образования скрытокристаллических пенистых наростов предполагается, как результат взаимодействия водорастворимых продуктов фумарольной деятельности конуса и атмосферных вод, проникающих под корку в зону высоких температур (>100° С). Пенистый облик, образующихся при этом фаз, является, видимо, следствием бурных химических реакций минерализованных вод с восходящим потоком высокотемпературных газов под коркой, сопровождающих быструю раскристаллизацию минералов в зоне вскипания [5].

Соединения водных сульфатов породообразущих элементов Al, Fe, Mg, отобранные на Мутновском вулкане (образец М-996), в 2008 г. были распространены на значительной площади вокруг большой активной фумаролы, которая находится на верхнем правом берегу реки Вулканная. Установлены в виде спутанноволокнистого агрегата из индивидов приз-

Рис. 1. Общий вид скрытокристаллических пенистых новообразований вулканических эксгаляций. Образец Тол.-102/76 с Первого конуса Северного внутреннего склона (СП) БТТИ.

		Пиккерингит		Алюмокопиапит							
Проба Тол-102/76		$Fe^{2+}Al_2(SO_4)_4 \cdot 22H_2O$ ([11] 12–299)		$(Mg, Al)(Fe, Al)_4(SO_4)_6$ $(OH)_2 \cdot 20H_2O$ (111, 20-659)		1	2	3	4	5	6
						16	3.766	30	3.79		
		([1		1 (1	· · · · · · · · · · · · · · · · · · ·	21	3.666	6	3.67		
I/I_1	$d_{\text{изм.}}, A$	I/I_1	$d_{\text{изм.}}$, Å	I/I_1	<i>d</i> _{изм.} , А	28	3.645	-	-,		
1	2	3	4	5	6	19	3 619				
25	18,4			80	18,1	43	3 520			50	3 58
7	13,3					100	3 501	90	3 51	50	3,50
9	10,4	5	10,6			41	3 386	19	3 34	5	3.36
6	10,0					19	3 174	12	5,54	10	3,30 3,99
45	9,5	18	9,7			12 97	3 040	Q	3.05	10	3.04
28	9,3			100	9,2	21 0	3,040 2.071	10	3,05 9.079	10	5,04
18	7,8	12	8,0			9 15	2,971	10	2,970	10	9.09
15	6,8	4	6,73	10	6,82	10	2,094	20 14	2,090	5	2,92
9	6,2			70	6,17	20	2,000	14	2,030	5	2,00 0.70
18	6,03	20	6,08			1	2,722	ð	2,721	Э 10	2,73
7	5,95					11	2,687	20	2,687	10	2,67
4	5,82	10	5,87			11	2,614	8	2,618	5 -	2,62
22	5,58			80	5,58	10	2,548			Ъ	2,508
34	5,53					10	2,518	6	2,523		
10	5,26	14	5,31	30	5,32	10	2,467	8	2,741		
20	4,94	20	4,97		,	9	2,394	8	2,402		
100	4.82	100	4.82			3	2,361			10	2,36
15	4.58	14	4.62	30	4.68	5	2,300	10	2,304		
7	4.49		7 -	20	4.48	7	2,280	14	2,284		
15	4.37	14	4.40		_,	6	2,229				
48	4 29	35	4 32	20	4 31	8	2,192	20	2,208		
66	4 23	00	1,01	20	4 20	10	2,181			5	2,165
35	4,20	20	4 18	50	1,20	3	2,116			5	2,101
49	4 11	20	4 19	30	4.01	13	2,074	10	2,086	20	2,063
714 22	ч,11 2.065	30 20	3.07	50	4,01	5	1,8923				
ออ 1 ใ	3,800	20	0,91	10	3 88	7	1,8711	16	1,869		
19	5,690			10	0,00						

Таблица 1. Дебаеграмма пробы Тол-102/76 в сопоставлении с данными рентгенографической картотеки по пиккерингиту $MgAl_2(SO_4)_4 \cdot 22H_2O$ и алюмокопиапиту $(Mg, Al)(Fe, Al)_4(SO_4)_6(OH)_2 \cdot 20H_2O$ ([11] карточки 12-299 и 20-659).

Примечание. Режим съёмки: Дрон-2, СиКа, 35 kv, 20 mA, 400/5, 2°/мин. Аналитик Л. П. Вергасова (СПбГУ, Санкт-Петербург).

матического облика бледно-жёлтого цвета с зелено- лой вытяжки, дифференциально-термического анаватым оттенком и шелковистым блеском, покрывающего поверхность субстрата «мохообразным ковром». Температура образования была менее 100° С. Являются продуктом, выкристаллизовавшимся на по- деление которых не представлялось возможным. верхности прогретого участка Донного фумарольного поля при конденсации вулканических газов. Отложения водных сульфатов породообразующих элементов в значительных количествах установлены здесь не впервые [9].

Физико-химические исследования

Пробы Тол.-102/76 и М-998/08 были изучены с использованием рентгенографии поликристаллов, химического анализа методом водной и слабо-кис-

лиза [4] и метода инфракрасной спектроскопии.

По данным рентгеновских исследований проба Тол-102 представляет собой смесь минералов, раз-В работе [4] в пробе предварительно было диагностировано промежуточное соединение ряда галотрихит-пиккерингит — железистый пиккерингит. Приведена предполагаемая формула, рассчитанная по данным химических исследований. Полученные новые данные при более детальной расшифровке рентгенофазового анализа (съёмка с эталоном Ge, табл. 1) свидетельствуют о присутствии в пробе также минерала группы копиапита. По данным химического анализа, в связи с наличием Са, очень вероятна незначительная примесь ангидрита (по па-

Компоненты	M-996/08	Тол-102/76			
CaO	0,00	1,43			
MgO	1,11	4,18			
FeO	6,07	1,08			
$\mathrm{Fe}_2\mathrm{O}_3$	0,10	5,13			
Al_2O_3	13,44	9,34			
SO_3	40,83	42,36			
Нераст. остаток	не определялся	0,45			
H_2O^-	24	16,64			
H_2O^+	не определялся	16,65			
H_2O^+ расч.	[10, 65]				
Прочие	3,80	2,48			
Сумма	100,00	99,29			

Таблица 2. Химический состав образцов, масс. %

Примечание. М-996/08 — анализ водной вытяжки (pH 3,86; в нерастворимом остатке изменённый neneл). Прочие: NH₃ 0,36; Na₂O 0,57; SiO₂ 2,87. Toл-102/76 — анализ слабо-кислой вытяжки (5%). Прочие: NH₃ 0,32; Na₂O 1,22; K₂O 0,49. Ана литичи С В Сергеева и В В. Личин-Барховская

Аналитики С. В. Сергеева и В.В. Дунин-Барковская (АЦ ИВиС ДВО РАН).

рагенезису). Незначительная примесь алуногена подтверждается несколькими рефлексами на дифрактограмме. Таким образом, минеральный состав пробы Тол-102 можно представить следующим образом — ведущим минералом пробы является пиккерингит, конечный член изоморфного ряда галотрихит-пиккерингит, второстепенным - алюмокопиапит [10, 11], возможно феррикопиапит (линия d/n 18,4 [11], карточка 29–714). Расчётная формула ведущего минерала по данным химического анализа слабо-кислой вытяжки пробы Тол-102 (табл. 2) в пределах погрешности анализа имеет вид — $Mg_{1.09}Al_{1.92}(SO_4)_4 \cdot 15H_2O$. Содержание воды заметно меньше известных данных, что отмечается для большинства анализов, приведённых в справочнике [6]. Всё железо в анализе, исходя из уточнённых рентгеновских данных, наиболее вероятно входит в состав алюмокопиапита.

Идентификация вещества пробы М-996/08 проведена также с использованием рентгенографии и химического анализа. На дебаеграмме большинство линий межплоскостных расстояний принадлежат минералу, линии которого — (d/n(I)): 15,9(7); 10,4(14); 9,6(9); 7,9(9); 6,0(17); 4,8(89); 4,3(49); 3,49(100)относятся к основным характеристическим линиям минералов изоморфного ряда галотрихит-пиккерингит. Окончательная диагностика проведена по преобладанию среди катионов, помимо алюминия, Fe²⁺ (см. табл. 2). Присутствие магния свидетельствует, что ведущий минерал имеет промежуточный состав, но близкий к другому конечному члену ряда галотрихиту. Расчётная формула по данным химического анализа методом водной вытяжки имеет вид $(\text{Fe}^{2+}_{0,67}\text{Mg}_{0,22})_{\Sigma 0,89}\text{Al}_{2,07}(\text{SO}_4)_{4,0} \cdot 15\text{H}_2\text{O}$, в котором отношение Fe^{2+} : Mg = 3. Содержание воды в анализе меньше по сравнению с известными дан-

ными [6]. В виде незначительной примеси в пробе присутствуют минералы алуноген (d/n(I): 13,3(5);4,5(16); 3,62(13); 3,33(15); 3,05(22)) и гипс, отделение которых не представлялось возможным. Их присутствие не противоречит результатам исследований.

Вышеуказанные образцы минеральных новообразований были проанализированы методом инфракрасной спектроскопии (анализ спектров поглощения снятых в средней области инфракрасного диапазона). Инфракрасные (ИК) спектры регистрировались на спектрофотометре IRAffinity-1 с преобразованием Фурье фирмы Shimadzu, с использованием прессования таблетки образца со спектрально чистым КВг. В табл. 3 приведены значения частот колебаний исследуемых образцов. Идентификация полос поглощения проводилась методом характеристических частот по корреляционным таблицам [8, 1], и были отнесены к сульфатам (ионной группы — SO₄) 1250–1000; 650–610; 450 см⁻¹.

Основные колебания расположены в интервале высокочастотной области спектра 1050–1200 см⁻¹ эти полосы поглощения относятся к валентным колебаниям S-O-связи, которые подтверждаются присутствием в низкочастотной области 600-670 см⁻¹ S-Oсвязи деформационного колебания [1]. На спектрах 1 и 2 (рис. 2) самая интенсивная полоса имеет расщепления, что может свидетельствовать о различной степени деформации тетраэдра SO₄ в кристаллах сульфатов [8]. Интенсивные полосы поглощения на спектрах в областях частот $1600-1700 \,\mathrm{cm}^{-1}$ отнесены к деформационным колебаниям Н-О-Н связи, а в области $3000-3600 \,\mathrm{cm^{-1}}$ — к валентным колебаниям H-O-H связи кристаллизационной воды в минералах, что характерно для водосодержащих сульфатов. Сравнение ИК-спектров исследуемых природных образцов со спектрами индивидуальных соединений (галотрихит, пиккерингит, копиапит, алуноген, гипс), показало, что образцы состоят преимущественно из минералов изоморфного ряда галотрихит-пиккерингит и близки к эталонным ИК-спектрам минералов этого ряда [3, 8, 12]. Переменный состав изученных минералов и специфика химизма, определяемая простой схемой изовалентного изоморфизма $Mg^{2+} \to Fe^{2+}$, не приводят к значительному изменению вида спектра. На общий вид спектра не повлияли также особенности агрегатного состояния и различные условия образования минералов изоморфного ряда галотрихит-пиккерингит.

Вывод

Комплексом взаимоконтролирующих методов изучены минералы изоморфного ряда галотрихитпиккерингит из продуктов фумарольной деятельности Новых Толбачинских вулканов и в. Мутновский. Полученные результаты могут быть использованы при идентификации минералов промежуточного состава ряда соединений с общей формулой (Mg, Fe²⁺)(Al, Fe³⁺)₂(SO₄)₄ · 22H₂O. Опыт показал перспективным применение экспрессного определения состава минералов в продуктах фума-

Таблица 3. Положение полос поглощения на ИК-спектрах проб новообразований (Тол-102/76 и М-996/08).

Образцы	Волновые числа (см ⁻¹)							
Тол102/76	448; 480; 601; 623; 675; 950; 1000; 1087; 1111; 1140; 1660; 2530; 3000; 3200; 3400; 3560							
M-996/08	432; 480; 602; 625; 694; 957; 1000; 1080; 1119; 1650; 2550; 3000; 3260; 3400; 3600							

Аналитик М.А. Назарова (АЦ ИВиС ДВО РАН).

Рис. 2. ИК-спектры поглощения исследуемых образцов. 1 – проба Тол-102/76 2 – проба М-996/08, 3 – КВг, используемый при пробоподготовке.

рольной деятельности вулканов с использованием физических методов исследований (рентгенографии, ИК-спектроскопии) дополняющих, а в ряде случаев заменяющих сложную и трудоёмкую диагностику методом химического анализа.

Список литературы

- 1. Баранов В.Ф., Гончаров Г.Н., Зорина М.Л. Современные физические методы в геохимии. Л.: Изд-во Ленинградского ун-та, 1990. 391 с.
- 2. Большое трещинное Толбачинское извержение. Камчатка, 1975–1976 / под ред. Федотова С. А., М.: Наука, 1984. 637 c.
- 3. Болдырев А.И. Инфракрасная спектроскопия минералов. М.: Недра, 1976. 199 с.
- 4. Вергасова Л.П., Степанова Е.Л., Филатов С.К. Маловодная железистая разновидность пиккерингита 11. вулканогенно-эксгаляционного происхождения. Материалы XIY Международного совещания по рентгенографии минералов. г. Санкт-Петербург. 21-24 июня 1999 C 160
- 5. Вергасова Л.П., Филатов С.К., Дунин-Барковская В.В. Постэруптивная деятельность Первого конуса БТТИ 12. Moenke H. Mineral spektren, tt. I, II. 1966. и современное вулканогенное формирование бокситов // Вулканология и сейсмология. 2007. №2. С. 55-77.

- 6. Дэна Дж.Д., Дэна Э.С., Пэлач Ч., Берман Г., Фрондель К. Система минералогии. 1953. Т.Ш. Полутом 1. ИЛ. C. 773
- 7. Селянгин О.Б. К вулканам Мутновский и Горелый: Вулканологический путеводитель. - Петропавловск-Камчатский: Холд. комп. «Новая книга», 2009. 108 с.
- 8. Плюснина И.И. Инфракрасные спектры минералов. М.: Изд-во МГУ, 1977. 175 с.
- Серафимова Е.К. Особенности химического состава 9 фумарольных газов Мутновского вулкана // Бюллетень вулканологических станций. 1966 г. № 42. С. 56 -65.
- 10. Хлыбов В. В., Симакова Ю. С. Гипергенная сульфатная минерализация на келловейских глинах реки Ухтым (Западное Притиманье) // Вестник, июнь, 2005. №6. 9-11.
- Mineral powder diffraction file: data book // compiled by the JCPDS - International Centre for Diffraction Data in cooperation with the American Ceramic Society... [et al.]. Swarthmore, PA, U.S.A. (1601 Park La., Swarthmore 19081): International Centre for Diffraction Data, 1986. 1396 p.