Геофизические исследования

УДК 551.21

ПРИЧИНЫ ВАРИАЦИЙ АКТИВНОСТИ РАДОНА В ПОЧВЕННОМ ВОЗДУХЕ НА УЧЕБНОМ ПОЛИГОНЕ У ЗАПАДНОЙ ОКРАИНЫ ПОС. СОСНОВКА

В.И. Андреев, И.Ф. Делемень, Т.Н. Помазанова

Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006; e-mail: via@kscnet.ru

Исследование радиоактивных элементов (РАЭ) представляет интерес для изучения геологического строения, геохимии и сейсмотектонической активности районов. Среди естественных радионуклидов, присутствующий в почвах радиогенный газ радон (Rn), представляет опасность, если его концентрация превышает предельно допустимую (ПДК) [14, 17].

В 2004-2008 гг. на учебном полигоне пос. Сосновка периодически измерялась альфа- и гамма-активность почвы. Было проведено сопоставление ряда сезонных изменений этих параметров и предложено объяснение причин вариаций гамма - (у) и объемной активности радона (OARn).

Общее описание полигона

Сосновский полигон размером 200×300 м расположен у восточного подножья хребта Тополового - юго-восточного отрога Срединного хребта. Песчано-глинистые породы, слагающие поверхность полигона, образовались в результате последовательно наслаивающихся отложений конусов выноса, сформированных в результате мощного оледенения. Первичный состав пород, из которых были образованы осадочные отложения полигона, вероятно, был близким к андезитам. Возраст песчано-глинистых отложений – первые сотни тысяч лет - время последнего крупного оледенения [4].

Согласно исследованиям В.Л. Леонова (устное сообщение), это оледенение закончилось около 130 тыс. л.н. Оно оставило моренный, преимущественно глинистый с содержанием гальки и валунов, материал на западном побережье и в долинах некоторых рек восточного побережья Камчатки.

Полигон входит в зону активной долгоживущей геотектонической структуры - Паратунского грабена, заложившегося в начале плейстоцена, около 1.5 млн. лет назад [4]. Следы древних и свежих оползней и обвалов, блуждание русел мелких и средних водотоков в пределах Паратунского грабена свидетельствуют о современной активности структуры в целом и деформации отдельных участков. Одним из таких участков является Сосновский учебный полигон.

Характеристика пород и их радиоактивности

Породы, слагающие поверхность полигона на глубину около 2.5 м, относятся к типичным монтмориллонитовым глинам, для которых характерно набухание [5]. Объемный вес глин с глубины 50 см после высушивания при Т 400^{0} С составлял 0.7 г/см³, при полном водонасыщении — 1.44 г/см³. В составе глин преобладают окислы кремния, алюминия и железа. По разрезам, вскрытым скважинами близ полигона и в окрестностях пос. Николаевка, мощность глинистых отложений достигает 100 м. Состав пород полигона, а также атмосферных и почвенных газов в его пределах, показаны в табл. 1-2, значения интегральной гамма-активности (γ) и объемной активности почвенного радона (OARn, α), изучавшихся в течение 5 лет, — в табл. 3, 4.

Измерения γ на полигоне проводились радиометром СРП-68-01 в конце мая начале июня 2004-2008 гг. Большая часть замеров проводилась в 0-1 см от земной поверхности и несколько раз в шурфах глубиной до 2 м.. Измерения α выполнялись тогда же радиометром альфа - активных газов РГА-01 в предварительно проделанных скважинах (бурках) глубиной 0.8 м. В бурку вставлялся перфорированный пробоотборник с конусом-уплотнителем, затем газ закачивался в сцинтилляционную камеру объемом 0.5 л. и анализировался в первую минуту. Методика измерений соответствовала описанной в прилагаемых к радиоизмерительным приборам инструкциям и приведенной в работах ряда исследователей [15].

Таблица 1. Химический состав глины из района пос. Сосновка, в вес. %.

Дата			
отбора	27.05.05	8.11.07	8.11.07
No	«Сосновка»	A-40/07	A-41/07
SiO ₂	38.17	47.1	45.4
TiO ₂	1.21	1.36	1.34
AL_2O_3	19.36	20.4	21.0
Fe ₂ O ₃			6.62
FeO	4.19	2.73	4.02
MnO	0.15	0.22	0.24
MgO	2.26	1.01	1.0
CaO	1.98	2.62	2.84
Na ₂ O	1.61	0.93	0.98
K ₂ O	0.48	0.72	0.7
H ₂ O-	8.48	1	-
П.п.п.	18.40	14.5	15.4
P_2O_5	$_{2}O_{5}$ 0.46		0.34
Σ			99.88
S %	-	0.09	0.1
F %	-	< 0.01	< 0.01
Th(ppm)	-	7	7
Pb(ppm)	-	21	24
Cu(ppm)	-	48	54
Ba(ppm)	Ba(ppm) -		337

Примечание. Образец «Сосновка» взят с глубины 1.7 м, обр. A-40/07 и A-41/07-0.2 и 0.4 м, соответственно. Аналитики: «Сосновка» - Осетрова $T.\Gamma.$; A-40/07 и A-41/07 - Карташова E.B. Аналитический центр Института вулканологии и сейсмологии ДВО РАН.

По содержанию главных компонентов - азота и кислорода - состав почвенного газа мало отличается от стандартного анализа приземного атмосферного воздуха. Отличие почвенного газа из бурки в контрольной точке — в сравнительно высоком, вдвое большим, по сравнению с атмосферным, содержание CO₂ (табл. 2). В 2004 г. измерения γ- и α- активности на полигоне проводились по сетке через 50 м двумя сериями с интервалом в 6 дней. В обоих случаях сериям замеров на полигоне предшествовали мощные циклоны с обильными осадками. Для измерений выбирались ясные и безветренные дни с устойчивыми, стабильными метеоусловиями. Замеры проводились в течение одного дня. Перед измерениями и после их окончания на полигоне проводились замеры α и γ в контрольных точках, расположенных в пределах полигона и в атмосфере на высоте 2 м. Периодические измерения ОАRn в контрольной точке проводились в течение 10 дней. Измерялись атмосферное давление, температура воздуха и скорость ветра. При проходке шурфов и скважин в конце мая 2004-2008 гг.

на глубине 30-60 см встречались прослои мерзлых пород, преимущественно глин. К середине июня в 2004-2007 гг. мерзлые прослои полностью оттаивали и в новых бурках и шурфах не обнаруживались.

Таблица 2. Состав почвенного газа в контрольной точке и атмосферного воздуха в 2 м над ней в об. %.

Компоненты	AC - 1/07 контрольная .точка,	АС – 2/07 атмосфера.
	почвенный газ	
Не	0	0.0016
H_2	0	0.0006
O_2	19.431	20.304
Ar	0.930	0.901
N_2	77.771	77.950
CO	0	0
CO_2	1.680	0.620
CH ₄	0.06	0.03
$C_2H_6^{-6}$	172.5	115.0
$C_2H_4\cdot 10^{-6}$	13.4	7.4
$C_3H_8\cdot 10^{-6}$	2.7	2.7
$C_3H_6\cdot 10^{-6}$	5.6	5.0
IC ₄ H ₁₀ · 10 ⁻⁶	40.7	33.4
NC_4H_{10} 10^{-6}	20.2	18.5

Примечание. В каждом из приведенных анализов газа из бурки в контрольной точке и атмосферного воздуха в 2 м над поверхностью земли приведены средние значения по двум анализам.

Таблица 3. Концентрация стандратных изотопов-гамма-излучателей в глине из района пос. Сосновка

Глина	²³² Th по линии 583	²³⁸ U по линии 609	⁴⁰ К по линии 1460 кэВ
	кэВ	кэВ	
«Сосновка»	1.6 ± 0.5 Бк/кг	0.5 ± 0.1 Бк/кг	26.4 ± 2.7 Бк/кг

Примечание. Лабораторные измерения содержания гамма-излучателей выполненны с помощью полупроводникового гамма-спектрометра Canberra с блоком детектирования GC-3020 руководителем группы радиоактивности окружающей среды (г. Москва) д.х.н. Ю.А. Сапожниковым в декабре 2005 г. Близкие значение гамма-активности глины из района пос. Сосновка были обнаружены при гаммаспектрометрическом анализе в лаборатории Камчатскго университета (устное сообщение проф. В.П. Федорченко).

Отмечалась сравнительно невысокая и стабильная γ от 2,7 мкР/ч в атмосфере на высоте 2 м над поверхностью полигона до 6 мкР/ч в шурфе на глубине 2 м (средняя $\gamma \sim 3.9$ мкР/ч) и довольно высокая сильно варьирующая α от 400 до 7300 Бк/м³, (средняя $\alpha \sim 1900$ Бк/м³). В доме с хорошей вентиляцией минимальная α равнялась 300 Бк/ м³, в атмосфере на высоте 2 м над поверхностью полигона она не превышала 70 Бк/м³. Значительные вариации α наблюдались как при повторных замерах в одних и тех же точках на профилях, так и в контрольных точках. Метеоусловия при проведении большинства серий замеров изменялись незначительно (табл. 4).

С 17.06. по 7.08. 2005 г. был проведен мониторинг α одновременно в бурке, контрольной точке и в жилом помещении, расположенном на территории полигона. Абсолютные значения α при измерении РГА-01 и устройством "Ревар" различны. По

замерам РГА-01 величина α выше и отличия между отдельными замерами более резкие, что связано, очевидно, с калибровкой прибора и особенностями методики измерений α . Общие тенденции вариаций α , выявленные с помощью серий измерений разными приборами, весьма схожи.

Таблица 4. Средние значения и вариации α Бк/м³ в почвенных газах и γ мкР/ч на поверхности полигона в мае-июне 2004-2007 гг., в ноябре 2007 г. и в мае-июне 2008 г.

Дата	Средняя	Средняя	Рмм	T	Ветер	Примечание
изме-	$\alpha \mathrm{K}/\mathrm{M}^3$	γ мкР/ч	рт. ст.	^{0}C	м/сек	_
рений						
5-6.	1800(30) /	3.6(25) /	754	12	4	Высокая облачность
2004	600-7300	2.7-4.5				
5-6.	2000(25) /	3.6(20)/	750	13	3	Ясно
2005	700-5500	2.8-4.4				
5-6.	1900(10) /	3.8(8) /	745	13	4	Высокая облачность
2006	400-2700	3.0-4.4				
5-6.	1900(25) /	3.7(20) /	750	11	3	Низкая облачность
2007	600-5100	3.0-4.5				
8.11.	570(2)/	4.0(1)	750	-3	1	Ясно. Ветер 3 м/сек. Верхний слой
2007	460-680					почвы местами промерз до 3 см
29.5.	1800(2)	4.5	756	8	<1	Контрольная точка. Пасмурно.
2008						Слабый дождь.
30.5.	700(2)	4.5	758	4	2	9 ³⁰ . Контр. Точка. Не обнаружено
2008						сезоннопромерзшего слоя.

Примечание. В числителе - среднее измерение в контрольной точке и на площади полигона, в знаменателе — вариации значений, в скобках - количество измерений. P — атмосферное давление, T — температура воздуха.

Обсуждение результатов

Из составляющих измеряемое гамма - и альфа-поле главными материнскими изотопами являются уран - 238 U (весовое содержание в земной коре - $^{3\cdot10^{-4}}$ %) , торий - 232 Th (8 · $^{10^{-4}}$ %) и 40 K (0.12 %). Период полураспада 238 U составляет 4.51· 109 лет, 235 U - $^{7.13\cdot10^{8}}$ лет, 232 Th - $^{1.39\cdot10^{10}}$ лет, 40 K - $^{1.31\cdot10^{-9}}$ лет. Уран, актиноуран и торий имеют ряды распада, в которых путем последовательных ядерных превращений (15) образуются новые радионуклиды вплоть до стабильных изотопов свинца. 40 С превращается, испуская 10 С и путем K-захвата в аргон [5]. В рядах распада, как правило, последующие дочерние изотопы более химически активны и подвижны по сравнению с предыдущими материнскими, кроме радона, актинона и торона, которые обладают большей подвижностью по сравнению с предшествующими и с последующими в рядах распада радионуклидами [14]. Периоды полураспада перечисленных радиогенных газов составляют, соответственно, 3.82 сут., 3.9 сек и 55 сек. В связи с небольшими периодами полураспада актинона и торона, реальное альфаполе обычно создает преимущественно радон, дальность миграции которого, по сравнению с актиноном и тороном, значительно больше [1, 13].

Основные гамма-излучатели (для ²³⁸U - 98%) в рядах распада располагаются после радиогенных газов. Большинство этих изотопов гамма-излучателей короткоживущие (в пределах суток). Лишь RaD (²¹⁸Pb) из семейства ²³⁸U имеет относительно большой период полураспада - 22 года [14]. Гамма-поле более стабильно и инертно по сравнению с альфа-полем, и при изменении интенсивности поступления материнских радионуклидов реагирует не так быстро, однако для современных изверженных пород и особенно для минеральных новообразований время изменения

гамма-активности (обычно заметного уменьшения γ) может измеряться месяцами. Сравнительно стабильным для гамма-поля является калий (40 K). Данные гамма-съемки и лабораторного анализа гамма-излучателей показывают, что именно 40 K и является главным гамма-излучателем на сосновском полигоне (табл. 3, 4).

Следующими по гамма-активности являются продукты распада Rn. Вклад радиогенных газов Tn и Ac в связи с малым периодом распада незначителен. Альфа поле в пределах полигона создает преимущественно радон (222 Rn). Главные радиоизотопы гамма-излучатели (RaB, RaC, RaC') в ряду распада урана и (ThC'', ThC', ThC, ThB,) в ряду распада тория располагаются после радона и торона [14]. Содержание гамма-излучателей во вмещающих породах глинах низкое (табл. 2) и средние значения γ в пределах полигона соответствуют концентрации гамма -излучателей, а отклонения от средних значений не превышают 30 % (табл. 4). По сравнению с естественным фоном г. Петропавловск-Камчатский гамма-активность полигона заметно ниже [15]. В то же время OARn полигона существенно выше многочисленных определений, сделанных авторами в почвенном газе на территории г. Петропавловск-Камчатский и в его ближайших окрестностях.

Очевидно, кроме РАЭ вмещающих пород, сравнительно высокие значения и вариации OARn могут быть обусловлены и другими причинами. Исследователи, проводившие многолетние детальные измерения OARn в пределах того же региона, отмечают возможность "случая с сосредоточенными параметрами" - перенос эманаций от обогащенного радием коллектора, либо от минерализованных родоновых вод [16]; в зоне интенсивной сейсмотектонической деятельности по [8].

На ОАRn существенное влияние может оказывать изменяющаяся под действием динамических нагрузок эманационная способность горных пород (Кэ), что установлено как практически - на многочисленных природных объектах, так и экспериментально-при помещении горных пород под нагрузку [6, 9]. Именно изменение этого параметра лежит в основе использования вариаций ок для прогноза землетрясений [7]. Изменение эманационной способности вулканогенных пород и, соответственно, значительные вариации ОАRn произошли вследствие изменения режима извержения Карымского вулкана [11]. Сходный же эффект стал причиной аномально высокой ОАRn в снежной толще под влиянием деформации и резкого увеличения Кэ подстилающих пород, произошедшей при мощной сейсмотектонической активизации окрестностей Карымского вулкана [2].

По [13] при γ 10-35 мкР/ч, α изменялось от 0,1 до 6.9х10⁴Бк/м³. Аномалии Rn при нормальном значении гамма-поля интерпретируются как активизация тектонических нарушений региона, находящихся в режиме растяжения.

Объемная активность радона в приповерхностных грунтах Сосновского полигона в весенне-летнее время сравнительно высокая, вариации этого параметра по данным замеров РГА-01 различались на порядок, по данным замеров автоматической станции «Ревар» — в несколько раз. Как говорилось выше, различия абсолютных значений с при дискретных замерах РГА-01 и мониторинге «Ревара» объясняются не только разной калибровкой приборов, но и различной методикой отбора почвенного газа. Кроме того, сезонное время мониторинга — вторая половина июня - начало июля по сравнению с сезонным временем дискретных замеров РГА-01 — концом мая - началом июня, отличается заметным уменьшением диапазона вариаций во время мониторинга, что хорошо видно на диаграмме (рис. 1). Содержание радона в почвах зависит главным образом от трех факторов: содержания его материнских радионуклидов в почвах и подстилающих породах; проницаемости почв и подстилающих пород для газов; коэффициентов эманирования (Кэ) пород, из которых поднимается к поверхности газ-носитель радона [2, 6, 13].

Локальные аномалии OARn часто возникают над разломными тектоническими структурами в зонах, находящихся в стадии растяжения и проницаемых для газов –

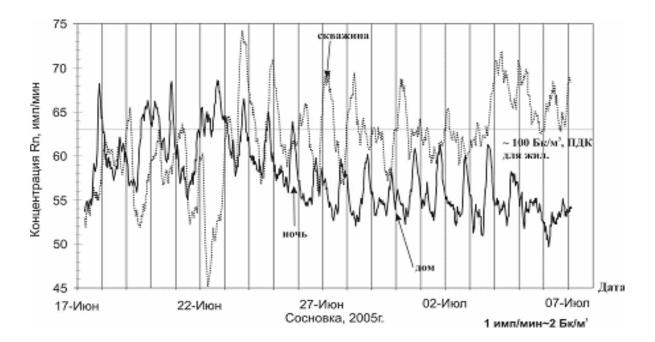


Рис. 1. Изменение OARn в течение 17 июня – 7 июля 2005 г. (измерено "Реваром", данные предоставлены П.П. Фирстовым).

транспортеров радона. В целом, γ полигона сравнительно стабильна, по сравнению с α , что объясняется большей подвижностью носителя радона - почвенного газа. Несовпадение абсолютных значений и вариаций гамма- и альфа-активности, как и нарушение равновесия между материнскими и дочерними изотопами объясняется в общем случае большей подвижностью дочерних изотопов по сравнению с материнскими [14, 16].

Видимо, на некоторой глубине, в зоне вскипания геотермального флюида сформировался эманирующий коллектор [12]. Наличие восходящего флюида подтверждается повышенным содержанием СО2 в почвенном газе (табл. 2). Глубина формирования и существования такого коллектора в каждом конкретном случае может варьировать и определяться параметрами флюида, вмещающих пород и прочими менее значительными факторами. Обычно глубина формирования эпитермальных месторождений РАЭ составляет первые сотни метров [10], тем не менее, повышенные значения а обычно фиксируются на земной поверхности и рассматриваются, как один из поисковых признаков месторождений РАЭ. Ураганные величины ²²⁶Ra, не подкрепленного материнским ²³⁸U, т.е. по существу эманирующий коллектор, обнаружен в Беринговом море на вершине подводного вулкана Пийпа на глубине 500 м [3], что можно аппроксимировать глубиной ~ 250 м на суше. Обогащение глинистых почв за счет поднимающихся газов, транспортеров радона – вторичный процесс [18] и в этом случае фиксируемая радоновая аномалия может не сопровождаться повышением гамма-фона [13]. Сравнительно высокие средние значения OARn и значительные вариации этой величины зафиксированы во время наибольших сезонных изменений, связанных с оттаиванием сезонно-промерзающих почвенных слоев Очевидно, обнаруженная аномалия α носит сезонно-временный характер, в течение большей части года не столь значительна и соответствует более инертной у, характеризующей общий средний уровень радиации района. Это предположение подтверждено измерениями α и γ активности, сделанными в контрольной точке 08.11.07. и 29-30.5.08.

Промерзающие и переувлажненные прослои глин экранируют поднимающийся с почвенным воздухом радон, заметно уменьшая OARn. По мере оттаивания и уменьшения увлажненности происходит относительная стабилизация OARn (α .)

На миграцию радия и радона (OARn) в природных водах могут влиять множество подпроцессов (в том числе поступление извне), каждый из которых в определенных условиях может оказаться лимитирующим. Так, нет однозначного объяснения троекратных вариаций OARn в водах районов с сильной тектонической активностью [6].

Опасность воздействия радиогенных газов большинству населения представляется экзотической и существующей где-то далеко. Это связано, видимо, с отсутствием информации. Например, недавно установлено, что в штате Мериленд (США) в подвалах домов, стоящих на слабо сцементированных осадках (глинах, песках), α в среднем превышают его концентрацию в почвах в 1.3 раза. Соответственно, жители оповещены об опасности и мерах предосторожности [17].

Заключение

Очевидно, сезонное увеличение концентрации почвенного радона, превышающее ПДК в почвах и в помещениях, может представлять реальную опасность для населения поселка Сосновка. Согласно соответствующим статьям Конституции РФ специалисты обязаны представить информацию об этой опасности органам местной власти и совместно с компетентными представителями спецслужб провести проверку и интерпретацию полученных данных.

Представленный материал показывает необходимость продолжения эманационной съемки района и обследования жилых и производственных помещений ближайшего к полигону населенного пункта. На примере представленных данных мониторинга OARn в производственном помещении хорошо видны периоды превышения ПДК по уровню радиации.

Выводы

- 1. Каждой весной 2004 2008 гг. на окраине поселка Сосновка при низкой стабильной гамма-активности регистрировалось высокое содержание OARn, более чем на порядок превышающее ПДК.
- 2. Источник высокой концентрации радона (эманирующий коллектор) расположен, возможно, на глубине нескольких сотен метров.
- 3. Причины значительных вариаций альфа-активности связаны, вероятно, с сезонными изменениями состояния, эманационной способности и проницаемости вмещающих пород полигона.

Авторы благодарят П.П. Фирстова за данные по работе "Ревара" и ценные консультации.

Список литературы

- 1. Адамчук Ю.В., Карпов Г.А., Максимовский В.А. и др. Содержание урана, тория и сопутствующих элементов (Pb, As, Hg, Bi, Rb, Sr) в породах и минеральных осадках действующей гидротермальной системы кальдеры Узон на Камчатке. Москва: ЦНИИатоминформ. 1986. 36 с.
- 2. *Андреев В.И., Делемень И.Ф.* Опыт изучения пространственно-временной изменчивости поля радона на юго-восточном фланге Карымского вулкана в мае 1996 г. // Вулканология и сейсмология, 2002. № 6. С. 36-41.
- 3. *Андреев В.И., Пузанков Ю.М., Бобров В.А. и др.* Радионуклиды в подводных отложениях вулкана Пийпа (Берингово море) // Вулканология и сейсмология 2004, № 6 с. 39-46
- 4. Геология СССР. 1964. М.: Недра. 490 с.
- 5. Геологический словарь. М.: Недра, 1978. С. 98

- 6. *Гудзенко В.В., Дубинчук В.Т.* Изотопы радия и радона в природных водах. М.: Наука, 1987. 156 с.
- 7. *Зубков С.И.* Радоновые предвестники землетрясений // Вулканология и сейсмология, 1981, № 6. С. 74-105.
- 8. Иванов В.В. Экологическая геохимия элементов. Книга З. М.: Недра. С. 339-351.
- 9. *Кабо В.А., Мусин Я.А., Идрисова С.И.* Особенности выделения радона в воду при длительном одноосном сжатии некоторых образцов горных пород // Изв. АН СССР № 7, 1989, С. 103-107.
- 10. *Наумов Г.Б.* Поведение радиоактивных элементов в гидротермальных процессах. В сб. Радиоактивные элементы в горных породах. Новосибирск: Наука. 1975. с 155-161.
- 11. *Сугробов В.М.*, *Чирков А.М*. О распределении радона в современных гидротермальных системах Камчатки // Гидротермальные минералообразующие растворы областей активного вулканизма. Новосибирск: Наука, 1974, С. 22-24.
- 12. Таран Ю.А. Геохимия геотермальных газов. М.: Наука. 1988. 160 с.
- 13. *Титаева Н.А., Зыков Д.С., Никулин В. И. и др.* Опыт применения радоновой съемки для выявления зон активизации тектонических структур // Вестник МГУ. 1995. № 4. С 67-73.
- 14. Титаева Н.А. Ядерная геохимия М.: МГУ. 2000. 336 с.
- 15. Титаева Н.А. Краткий курс лекций по радиогеоэкологии. М.:МГУ. 2005. 95 с.
- 16. *Фирстов П.П.*, *Рудаков В.П*. Результаты регистрации подпочвенного радона в 1997-2000 гг. на Петропавловск-Камчатском геодинамическом полигоне // Вулканология и сейсмология. 2002. № 6. С 1-16.
- 17. *Podsednik Mary*. Geologie assessment of radon-222 in Miclennan country, Texas // Bull. Baylor Geol., Stud. 1990. № 50 P. 4-43.
- 18. Sullivan K. T., Mose D. G., Mushrush G.W. Mineralogy and aeroradioactivity as indicators of radon hazard zones // Energy Sources. 1997. Vol. 19. № 7. P. 651 660.

REASONS FOR VARIATIONS IN VOLUMETRIC ACTIVITY OF RADON IN THE SOIL AIR AT THE PRACTICE GROUND IN SOSNOVKA (KAMCHATKA)

V.I. Andreev, I.F. Delemen, T.N. Pomazanova

The Institute of Volcanology and Seismology FEB RAS, 683006, Petropavlovsk-Kamchatsky, e-mail: via@kscnet.ru

Experiments conducted in May and June 2004 through 2008 at the practice ground near the western part of Sosnovka settlement revealed that at the constant low gamma-activity the volumetric activity of Rn exceeds by an order the maximum permissible concentration (MPC). We suppose that high Rn concentration is caused by emitting reservoir rock located at a depth of hundreds of meters. Large variations of alpha-activity are possibly related to seasonal conditions of the rocks of the practice ground and their emanation capability and permeability.