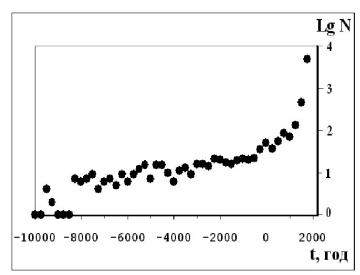
- 2. Кирюхин А.В., Асаулова Н.П., Finsterle S., Рычкова Т.В., Обора Н.В., Богатко Н.П. Численное моделирование паужетского геотермального месторождения с использованием ITOUGH2. Межд. Симпозиум по проблемам эксплозивного вулканизма. ИВиС ДВО РАН, 25-31 марта 2006 г. С. 178-186.
- 3. Паужетские горячие воды на Камчатке // отв. ред. Б.И. Пийп. М.: Наука, 1965. 207с.
- 4. Сугробов В.М. Геотермальные энергоресурсы Камчатки и перспективы их использования. Гидротермальные системы и термальные поля Камчатки, Владивосток, ДВНЦ АН СССР, 1976. С. 267-281.
- 5. Aunzo Z.P., Bjornsson G., Bodvarsson G.S. Wellbore models GWELL, GWNACL and HOLA. Users Guide // LBNL-31428, 1991, 102 p.
- V.Ladygin, J. Frolova, S. Rychagov (2000) Formation of Composition and Petrophysical Properties of Hydrothermally Altered Rocks in Geothermal Reservoir // Proc. WGC 2000, p. 2695-2699.
- 7. S.Finsterle. iTOUGH2 User's Guide \\ LBNL-40040, 1999, 130 p.
- 8. A.V. Kiryukhin, V.A. Yampolsky Modeling Study of the Pauzhetsky Geothermal Field, Kamchatka, Russia // Geothermics, v.33, 2004, No.4, 421-442 p.
- 9. K.Pruess. TOUGH2 a general purpose numerical simulator for multiphase fluid and heat flow \\ LBL-29400, 1991, 102 p
- 10. V.M. Sugrobov Evaluation of operational reserves of high-temperature waters // Geothermics, Special Issue 1970, #2, p.1256-1260.

УДК 550.34 + 551.24

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ ВУЛКАНИЧЕСКОЙ АКТИВНОСТИ ОКРАИНЫ ТИХОГО ОКЕАНА ЗА ПОСЛЕДНИЕ 12 ТЫС. ЛЕТ

Д.Р. Акманова

Институт Вулканологии и Сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006. e-mail: Dinara@kscnet.ru


Введение. Сейсмичность и вулканизм, рассматриваемые как процессы планетарного масштаба, взаимосвязаны. Действительно, подавляющая часть всех землетрясений планеты, в том числе все самые сильные из них, происходят в пределах сейсмических поясов, опоясывающих всю планету. Вблизи этих же поясов расположены и самые активные вулканы планеты. При этом, как отмечалось многими исследователями [1, 10, 13], для разных регионов отмечена корреляция между извержениями вулканов и временами сильных землетрясений. Эти данные указывают на то, что причины, приводящие к накоплению сбрасываемых при

землетрясениях напряжений и к движению изливающейся при извержениях вулканов магмы, имеют общие генетические корни. Или, учитывая планетарный масштаб рассматриваемых явлений, вероятно, один такой корень [4].

В работе приведено первое описание составленной для последних 12 тыс. лет мировой базы известных извержений вулканов, на основе которой, по-видимому, впервые целенаправленным образом исследуются пространственно-временные закономерности извержений вулканов планеты.

Характеристика исходных данных. С целью изучения закономерностей вулканической активности создана электронная база, включающая данные об извержениях вулканов мира в формате, аналогичной базе данных для землетрясений. В базе содержаться данные о следующих параметрах вулканов и их извержений: координаты вулканов, даты их извержений и объемы изверженного материала, которые брались из каталогов [6, 17, 18] и из данных, помещенных на интернет-сайте Смитсонианского института [18]. База включает все n=6226 известные (датированные) извержения N=562 вулканов планеты за последние 12 тыс. лет: 9850 д.н.э. \div 2005 гг. Везде в работе через N будем обозначать число вулканов, а через n- число их извержений соответственно.

В качестве количественной характеристики величины извержения нами использовался объем изверженного материала, значение которого изменялось в больших пределах: $10^4 \div 10^{11} \,\mathrm{m}^3$. При определении объемов некоторых наиболее сильных извержений нами использовались неопубликованные данные, любезно, предоставленные И.В. Мелекесцевым. В соответствии со шкалой, принятой в [18], все извержения в базе классифицировались нами по величине $W = 1, 2, \ldots 7$, которая соответствует объемам $10^{4-5}, 10^6, \ldots, 10^{11} \,\mathrm{m}^3$ соответственно.

 $Puc.\ 1.\ Числа\ извержений\ вулканов\ мира\ N\ в\ интервалах\ продолжительностью\ 250\ лет.$

Характеристика составленной базы по числу извержений с $W \ge 1$, представлена на рис. 1. Увеличение (монотонное) чисел извержений, очевидно, может быть объяснено факторами, связанным с появлением письменности и освоением новых территорий. Из данных, приведенных на рис. 1, видно, что числа извержений N имеют некоторую гармоническую со-

ставляющую. С этой целью представленная на рис. 1 зависимость N(t) разлагалась в ряд Фурье. Амплитуды выявленных гармоник приведены на рис. 2. Видно, что наибольшие значения ~ 0.3 имеют амплитуды двух гармоники с периодами $T_1 = 1600 \pm 110$ и $T_2 = 2400 \pm 140$ лет.

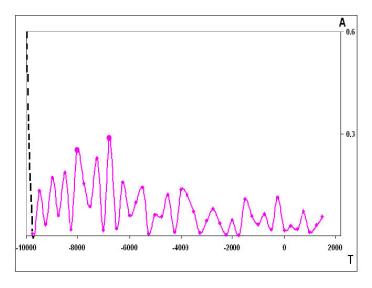


Рис. 2. Фурье анализ чисел извержений, представленных на рис. 1. A – амплитуда гармоник, T – период, тыс. лет.

Исследовались распределения чисел N извержений разных величин: N_4 для извержений с $W \ge 4$, $N_5 - c$ $W \ge 5$ и $N_6 - c$ $W \ge 6$. Из данных, представленных на рис. 3 видно, что зависимости $N_{4, 5, 6}$ (t), в целом, повторяют зависимость N(t) на рис. 1. При этом локальные максимумы вулканической активности на уровнях $N_{4, 5, 6}$ можно связать с наиболее сильными извержениями, происшедшими в 7480 д.н.э. (Львиная Пасть, о. Итуруп, W = 6), 4640 д.н.э (Апоэкуэ, Никарагуа, W = 5), 2040 д.н.э. (Лонг Айленд, Новая Гвинея, W = 6), 1815 г. (Тамбора, о. Сумбава, W = 7). Разности между датами этих сильных извержений составляют W = 10 и W = 11 и W = 12 и W = 13 и W = 13 и W = 14 и являются примерно кратными выделенным с помощью Фурье анализа гармоникам.

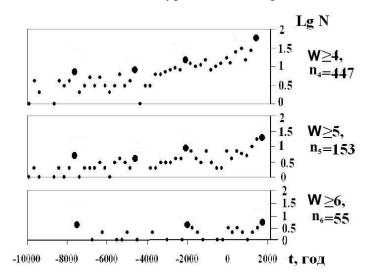


Рис. 3. Распределение количества извержений разных по величине: N_4 с $W \ge 4$, N_5 с $W \ge 5$ и N_6 с $W \ge 6$. Жирными точками обозначены максимумы чисел извержений, по времени совпадающие со следующими сильными извержениями (слева направо): Львиная Пасть - 7480 д.н.э., W = 6. Апоэкуэ - 4640 д.н.э , W = 5. Лонг Айленд - 2040 д.н.э., W = 6. Тамбора - 1815 г., W = 7.

Общеизвестно [3, 7, 9], что наиболее активным вулканическим регионом планеты является окраина Тихого океана. Данные нашей базы подтверждают такой вывод. Действительно, из 562 вулканов мира, извергавшихся n=6226 раз за последние 12 тыс. лет, 364

(61%) вулкана и n=5353 (86%) извержений, приходится именно на окраину Тихого океана. Из них, произошло n=155 извержений N=81 вулкана с W ≥ 5 (86%) и n=55 извержений N=41 вулкана с W ≥ 6 (95%).

Таблица 1. Протяженность L вулканических районов и продолжительность Т временных интервалов, для которых ранее были определены значения скоростей миграции вулканической активности.

Регион	L, км	Т, млн.лет	V (км/год)	Источник
Гавайско-Императорский хр. (Тихий океан)	6000	0÷75-80	$(78 \pm 3) \cdot 10^{-4}$	[8, 12]
хр. Луисвилль (юго-западная часть Тихого океана)	4300	0.5÷70	0.7	[8, 15]
Восточно-Каролинские о-ва	1500	1÷2	11.0 ± 0.4	[8]
Вост. Индийский хр. (хр. 90 Меридиана, в Индийском ок.)	5000	81÷38	1.0 ± 0.3	[8]
Калифорнийская зона (США)	1300	20÷25	0.6	[8]
Зона Бразес (штат Орегон)	250	10	$25 \cdot 10^{-4}$	[8]
горы Сан-Франциско	250	15	16·10 ⁻⁴	[8, 13]
зона Джеймз (Аризона - Нью-Мехико)	84.3	8.2÷11.8	6.10-4	[8]
Кенийский рифт (Африка)	600	0.9÷10	0.1 ± 0.06	[8]
в береговых хр. Калифорнии	220	0.01÷23.1	0.1 ± 0.01	[8]
в Центр. Америке	90	4÷17	$12 \cdot 10^{-4}$	[8]
Центр. участок Восточной Камчатки	250	50÷80	3·10 ⁻⁵	[8]
Центральная и Южная Америки	10000	20 век	900	[11]
Алеуты - Аляска	4000	20 век	100	[16]
Северо-западная окраина Тихого океана	9000	20 век	100	[4]

Обзор опубликованных данных по миграции вулканической активности. Рядом авторов отмечена миграция («перемещение» в одну сторону с определенной скоростью V) вулканической активности (табл. 1) как в пределах отдельно взятых вулканических центров [8, 12, 14, 15], так и в пределах вулканических дуг [4, 11, 16]. В первом случае значения скоростей миграции вулканической активности оказались расположенными в пределах $V = 3 \cdot 10^{-5} \div 2 \cdot 10^{-3}$ км/год, во втором — для двух цепочек вулканических извержений отмечены скорости миграции, равные V = 100 и 900 км/год. В работе [4] на региональном уровне было установлено существование корреляции между извержениями вулканов и сильнейшими землетрясениями и на основании этого сделан вывод о миграции вулканической активности вдоль северо-западной окраины Тихого океана со скоростью около 100 км/год. Как видим разными авторами независимо друг от друга были выявлены пространственно-временные закономерно-

сти в распределении извержений — миграции, значения скоростей которой лежат в пределах многих порядков по величине: $10^{-5} \div 10^3$ км/год (табл. 1). Большая величина диапазона скоростей миграции вулканических извержений, по видимому, связана с «разномасштабными» закономерностями проявления вулканической активности, которые характерны для разных вулканических центров планеты в течение различных временных интервалов.

С использованием составленной базы вулканических извержений проверим гипотезу миграции вулканической активности в пределах самого активного региона планеты - окраины Тихого океана.

Методика исследования. Вулканы вдоль окраины Тихого океана, как можно видеть из данных, представленных на рис. 4, расположены в пределах достаточно узкой полосы. Это позволяет в качестве пространственной характеристики вулкана (и его извержений) использовать координату, определяющую его удаленность вдоль полосы относительно «крайнего» вулкана Бакл Айленд, координата которой принята нами за L=0. Общая протяженность «окраинной» линии, изображенной на рис. 4, от вулкана Бакл Айленд (Антарктика) до Десепсьон (Южные Шетландские острова) составляет L=45400 км. Исследование свойств пространственно-временного распределения извержений тихоокеанских вулканов будем проводить на плоскости с осями «расстояние по дуге $0 \le L \le 45400$ км — время извержений t».

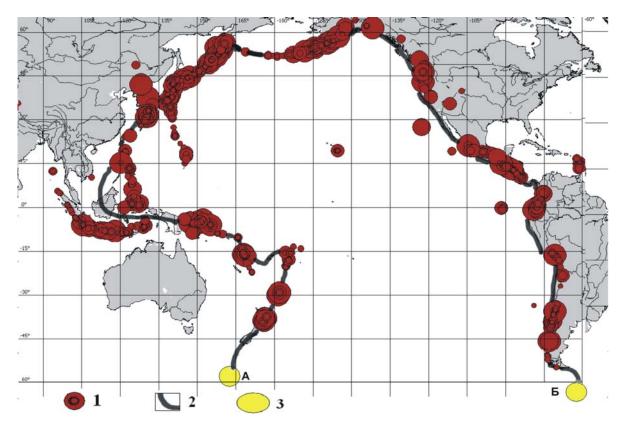


Рис. 4. Положение вулканов в пределах окраины Тихого океана. 1 – местоположения вулканов; 2 – линия, вдоль которой определялись пространственные координаты вулканов и их извержений; 3 – «крайние» вулканы тихоокеанской окраины, данные о которых содержаться в базе данных: А – вулкан Бакл Айленд и Б – вулкан Десепсьон.

Определение пространственной координаты L. Определение скоростей миграции извержений вулканов будем, по аналогии с миграцией сейсмичности [4], проводить в плоскости с осями «расстояние вдоль окраины - L — время извержений t». В качестве расстояния вдоль дуги нами выбрана линия, как и в работе [5] примерно совпадающая с осями глубоководных желобов и границами тектонических плит. Математическое определение этой линии проводилось по 63 точкам, отображающим все особенности простирания глубоководных желобов и линий стыка тектонических плит, вдоль окраины Тихоокеанского кольца. Были получены параметрические уравнения интерполирующей кривой в виде $\begin{cases} \theta = \theta(\tau) \\ \lambda = \lambda(\tau) \end{cases}$ $\tau \in [0;62]$, где широты $\theta(\tau)$ и долготы $\lambda(\tau)$ точек математической аппроксимации окраины Тихого океана являются кубическими дважды дифференцируемыми сплайнами. Тогда расстояние вдоль определенной нами окраинной линии вдоль поверхности Земли от начальной точки ($\tau = 0$) до точки с текущими координатами $\theta(\tau)$, $\lambda(\tau)$ можно вычислить по формуле $L = R_{Earth} \int_{s}^{\tau} \sqrt{\left(\frac{d\theta}{ds}\right)^2 + \cos^2\theta(s)\left(\frac{d\lambda}{ds}\right)^2} \, ds$.

Миграция извержений. Расположение наиболее сильных (W ≥ 6) извержений вулканов в пределах окраины Тихого океана за последние 12 тыс. лет приведено на рис. 5. Видно, что достаточно сильные извержения распределены крайне неравномерно, выделяются периоды низкой активности в 3550 - 2040 д.н.э. и 1350 - 250 д.н.э., которые на рис. 5 представлены заштрихованными областями. Поэтому для выявления пространственно-временных закономерностей распределения вулканической активности нами был выбран последний достаточно однородный по активности временной интервал 250 д.н.э. – 2005 гг., в пределах которого отмечено n = 25 извержений N = 22 вулканов с $W \ge 6$. Данные об этих извержениях приведены в табл. 2.

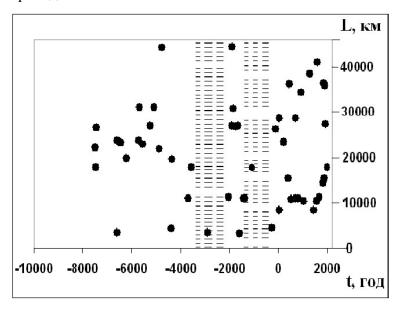


Рис. 5. Расположение тихоокеанских вулканов и их извержений с $W \ge 6$ (N = 41, n = 55) на пространственно (L) — временной (t) карте. L — координаты вулканов и их извержений вдоль окраинной линии, определяемой нами по линии с помощью приведенного в тексте соотношения; t — времена извержений. Штриховкой обозначены периоды низкой вулканической активности.

Таблица 2. Данные о тихоокеанских вулканах, для которых в интервале времени с 250 д.н.э. по 2005 гг. отмечены извержения с $W \ge 6$

№ п.п.	Дата извер- жения (год, месяц, день) [17, 18]	φ	λ	W	Название вулка- на	Район
1	-250 д.н.э.	-29.27	-177.92	6	о-в Раоул	Н. Зеландия
2	-100 д.н.э.	53.43	-168.13	6	Окмок	Алеутские о-ва
3	50.00.00	-16.25	168.12	6	Амбрум	Вануату
4	60.00.00	61.38	-141.75	6	Чурчил	Аляска
5	240.00.00	51.8	157.53	6	Ксудач	Камчатка
6	416.00.00	-6.1	105.42	6	Кракатау	Индонезия
7	450.00.00	13.67	-89.05	6	Илопанго	Сальвадор
8	540.00.00	-4.27	152.2	6	Рабаул	Н. Британия
9	700.00.00	61.38	-141.75	6	Чурчил	Аляска
10	710.00.00	-5.58	150.52	6	Паго	Н. Британия
11	800.00.00	-5.06	150.11	6	Дакатау	Н. Британия
12	930.00.00	21.13	-104.51	6	Цеборуко	Мехико
13	1030.00.00	-6.09	155.23	6	Билли Митчет	Боуганвилль
14	1280.00.00	-0.85	-78.9	6	Куилотоа	Эквадор
15	1452.00.00	-16.83	168.54	6	Кувае	Вануату
16	1580.00.00	-6.09	155.23	6	Билли Митчел	Боуганвилль
17	1600.02.19	-16.61	-70.85	6	Нуанапутина	Перу
18	1660.00.00	-5.36	147.12	6	о-в Лонг	Н. Гвинея
19	1815.00.00	-8.25	118	7	Тамбора	Ява
20	1835.01.20	12.98	-87.57	6	Косигуина	Никарагуа
21	1883.05.20	-6.1	105.42	6	Кракатау	Индонезия
22	1912.06.06	58.27	-155.16	6	Новарупта	Аляска
23	1902.10.24	14.76	-91.55	6	Санта Мария	Гуатемала
24	1932.04.10	-35.65	-70.76	6	Сьерро Азул	Чили
25	1991.04.02	15.13	120.35	6	Пинатубо	Филиппины

Примечание: ϕ – широта («– » южная) и λ – долгота («–» западная) вулкана.

Извержения с $W \ge 6$, происшедшие в период с 250 д.н.э. – 1932 гг. (N = 19, n = 21), имеют тенденцию группироваться в цепочки в пределах узких областей (рис. 6). Видно, что эти области имеют примерно одинаковые наклоны разделены друг от друга протяженными «пустыми» коридорами и следуют друг за другом через близкие по длительности интервалы времени. Определенные методом наименьших квадратов параметры аппроксимированных отрезками прямых линий цепочек извержений, заключенных в пределах таких узких областей, приведены в табл. 3. Данные, приведенные в табл. 3, показывают, что и значения наклонов миграционных линий «а» и интервалы времен между ними ΔT близки между собой; при

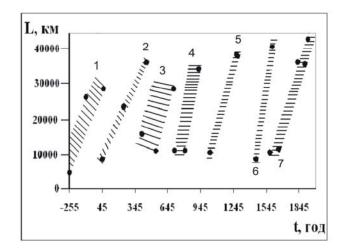


Рис. 6. Расположение тихоокеанских вулканов (N=19) и их извержений (n=21) с $W \ge 6$ в 250 д.н.э. — 1932 гг. p=1-7 — номера, заштрихованных областей, в пределах которых группируются сильные ($W \ge 6$) извержения; параметры областей, аппроксимированных прямолинейными отрезками, представлены в табл. 3.

Таблица 3. Параметры выделенных на рис. 6 областей миграции сильных (W ≥ 6) извержений, аппроксимированных прямолинейными отрезками.

p	k	а, км/год	Т, год	ΔT , год	Δ L, км
1	3	77	310	308	24179
2	3	69	400	401	27777
3	3	49	284	193	17900
4	3	112	220	291	23491
5	2	112	250	371	28087
6	2	220	148	224	32616
7	5	97	352		32835
		105 ± 37	280 ± 64	298 ± 62	

Примечание: p — порядковый номер области на рис. 6; k — количество извержений, попадающих в пределы области; a — значение «угла наклона» области; T — продолжительность одной миграционной области; ΔT — интервал времени между миграционными областями; ΔL — протяженность миграционной области.

этом «разброс» значений не превышает 30%. Полученные данные могут рассматриваться как сильный аргумент в пользу группирования извержений вдоль выявленных нами прямолинейных миграционных линий (рис. 6). Равные наклоны миграционных линий и близкие временные интервалы между ними позволяют предположить, что пространственновременное распределение извержений в 250 д.н.э. – 1932 гг., представленное на рис. 6, соответствует гипотезе миграции, согласно которой извержения тихоокеанских вулканов с $W \ge 6$ мигрируют вдоль окраины океана в направлении от Новой Зеландии к Южной Америке со скоростью $V = 100 \pm 40$ км/год. Пример такой миграционной цепочки (табл. 3, p = 7), включающий n = 5 извержений 1580-1932 гг. с $W \ge 6$, представлен на рис. 7.

Для проверки сформулированной нами гипотезы миграции были рассчитаны параметры следующей узкой области миграции, которая после последней цепочки p=7 (табл. 3, рис. 7) должна включать в себя следующие извержения тихоокеанских вулканов с $W \ge 6$: $\Delta T = 300 \pm 60$ лет, $a=100 \pm 40$ км/год. Прогнозная область миграции, представлена на рис. 8 заштрихованной областью. Видно, что из четырех последних извержений с $W \ge 6$, произошед-

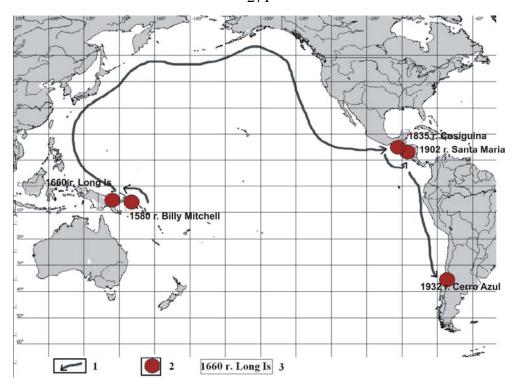


Рис. 7. Пример миграции в пространстве и во времени извержений 1580 - 1932 гг. тихоокеанских вулканов с $W \ge 6$. 1 – направление миграции; 2 – положение извергавшихся вулканов; 3 – название извергавшихся вулканов и годы их извержений.

ших в 1815-1991 гг., три попадают в пределы «прогнозной миграционной области». Это позволяет с вероятностью не менее 0.7-0.8 принять нашу гипотезу о миграции вулканических извержений с $W \ge 6$ вдоль окраины Тихого океана в 250 д.н.э. — 1991 гг. в направлении от Новой Зеландии к Южной Америке.

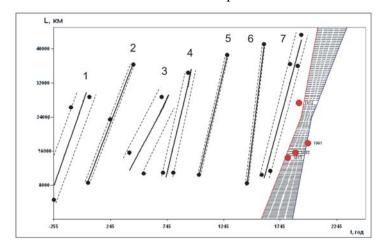


Рис. 8. Расположение тихоокеанских вулканов (N=22) и их извержений (n=25) с $W\geq 6$ в 250 д.н.э. — 1991 гг. p=1-7 — номера линий, параметры которых определенные методом наименьших квадратов и величины среднеквадратических отклонений, представлены в табл. 3. Штриховкой обозначена "прогнозная" область для извержений вулканов с $W\geq 6$ в 1815-1991 гг.

Выводы

- 1. В работе, с использованием известных мировых каталогов и списков [5, 16], приведено первое описание, составленной автором базы, включающей данные о 6226 извержений с $W \ge 1\,562$ вулканов за последние 12 тыс. лет.
- 2. Приведенный обзор литературы показал, что определенные разными авторами значения скоростей миграции лежат в пределах $10^{-5} 10^3$ км/год $(10^3 10^{-3}$ км/млн.лет).

- 3. В работе показано, что наиболее сильные (W ≥ 6) извержения тихоокеанских вулканов в 250 д.н.э. 1991 гг. имели тенденцию группироваться в пределах «узких» пространственно-временных областей, разделенных «пустыми» широкими коридорами. Выделенные «узкие» области имеют примерно одинаковый наклон и следуют друг за другом через близкие по времени интервалы.
- 4. Впервые с использованием данных о сильных ($W \ge 6$) извержениях вулканов в пределах окраины Тихого океана за последние 12 тыс. лет, в работе определено значение скорости миграции вулканической активности, которая оказалось равной 100 ± 40 км/год и близкой скорости миграции наиболее сильных Тихоокеанских землетрясений.

Работа поставлена научным руководителем Викулиным А.В. Автор признателен И.В. Мелекесцеву и Г.М. Водинчару за консультации и постоянное внимание к работе, а также Гириной О.А. за ряд ценных замечаний, значительно улучивших качество работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абдурахманов А.И, Федорченко В.И. О возможном истолковании пространственновременных связей сейсмических и вулканических явлений в Курило-Камчатской зоне // Вулканизм Курило-Камчатского региона и острова Сахалин. Труды СахКНИИ ДВНЦ АН СССР Южно-Сахалинск. 1976. Вып. 48. С. 6-16.
- 2. Ананьев В.П., Потапов А.Д. Инженерная геология. М.: Высшая школа, 2002. 511 с.
- 3. Бондарчук В.Г. Основы геоморфологии. М.: Государственное учебное-педагогическое издательство министерства просвещения РСФСР, 1949. 320 с.
- 4. Викулин А.В. Физика волнового сейсмического процесса. П-К.: КГПУ, 2003. 150 с.
- 5. Викулин А.В., Водинчар Г.М. Спектр энергии потока сейсмичности // Материалы ежегодной конференции, посвященной дню вулканолога. П.-К.: ИВиС ДВО РАН, 2005. С. 167-174.
- 6. Гущенко И.И. Извержения вулканов мира. М.: Наука, 1979. 339 с.
- 7. Короновский Н.В. и Якушова А.Ф. Основы геологии. М.: Высшая школа, 1991. 431 с.
- 8. Леонов В.Л. О некоторых закономерностях развития гидротермальной и вулканической деятельности на Камчатке // Вулканология и сейсмология. 1991. № 2. С. 28-40
- 9. Ломизе М.Г. Вулканическое кольцо Тихого океана: его прошлое, настоящее и будущее // СОЖ. 1999. № 9. С. 59-66.
- 10. Широков В.А. Связь извержений вулканов Камчатки с землетрясениями верхней мантии // Бюл. вулканол. станций. М.: Наука, 1978. № 54. С. 3-8

- 11. Berg E., Sutton G.H. Dynamic interaction of seismic and volcanic activity of the Nazca plate edges // Phys. of the Earth and Plan. Inter. 1974. N 9.
- Clague D.A., Dalrymple G.B. The Hawaiian Emperor volcanic chain. Part I. Geologic Evolution // Volcanism in Hawaii. Chapter I. U.S. Geol. Survey Prof. Paper 1350. Washington. 1987. P. 5-54.
- 13. Gresta S., Marzocchi W., Mulargia F. Is there a correlation between larger local earthquakes and the end eruptions at mount Etna volcano, Sicili? // Geophys. J. Int. 1994. 116. N 1. P. 230-232.
- 14. Kenneth L., Tanaka E. M., Shoemaker G. et all. Migration of volcanism in the San Francisco volcanic field, Arizona // GSA Bulletin. February 1986. v. 97; N 2. P. 129-141.
- 15. Lonsdale P. Geography and history of the Louisville hot spot chain in the southwest Pacific // J. Geophys. Res. 1988. v. 93. N 34. P. 3078-3104.
- 16. Sauers J. The westward migration of geophysical events in the Aleutians, Springs, 1986 // Cycles. 1986. 37. N 9. P. 203-204.
- 17. Simkin T. & Siebert L. Volcanoes of the world (catalogue). Published in association with the Smithsonian Institution. 1993. 350 c.
- 18. Smithsonian Institution Global Volcanism Program. Worldwide Holocene Volcano and Eruption Information (http://www.volcano.si.edu)

УДК 550.34:551.242

МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ ЛИТОСФЕРНЫХ ПЛИТ В АЛЕУТСКО-КАМЧАТСКОМ РЕГИОНЕ

Г.П. Авдейко^{1,2}, А.А. Палуева¹, О.В. Кувикас^{1,2}

- ¹ Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006; e-mail: gavdeiko@kscnet.ru
- ² Камчатский Государственный университет им. В.Беринга, Петропавловск-Камчатский

Введение

Изучение механизма взаимодействия литосферных плит имеет большое значение как для прогноза места и времени сильных землетрясений, так и для понимания строения зон субдукции геологического прошлого и выработки критериев их палеотектонических реконструкций. Камчатка и западная часть Алеутской дуги являются весьма удобным регионом для этих целей, так как здесь наблюдается ортогональная субдукция Тихоокеанской плиты (ТОП) под Евразиатскую (ЕАП) и трансформное взаимодействие ТОП и Северо-Американской литосферных плит (САП) с Командорской микроплитой между ними.