Пятнадцать лет из жизни вулкана Мутновского

Г.М.Гавриленко, Д.В.Мельников

дин из наиболее крупных вулканов Камчатки — Мутновский — более 40 лет находился в фазе спокойной фумарольно-гидротермальной деятельности. Однако 17 марта 2000 г. произошло извержение сразу в двух из трех его действующих кратеров: в так называемой Активной Воронке и в непосредственно примыкающем к ней Юго-Западном кратере, точнее в воронке, расположенной в его северной части, где за много лет копился мощный слой снега и льда. После извержения там образовалось кислое термальное озеро с высокой минерализацией вод (около 17 г/л), низкими значениями рН = 1.3 и температурой 40-50°C [1]. Впоследствии оно стало остывать и к зиме 2002-2003 гг. замерзло. В начале мая 2003 г. взрывная воронка опять активизировалась: за три-четыре дня мощная толща льда и снега в ней растаяли, а талые воды прогрелись до 35°C [2, 3]. А через три года, в апреле 2007 г., произошло еще одно извержение вулкана [4]. Всем этим событиям предшествовали очень похожие, постоянно наблюдаемые нами изменения гидрогеохимических характеристик термальных вод, которые в большом количестве имеются в пределах постройки Мутновского вулкана.

Для выбора и апробации методов геохимического прогно-

© Гавриленко Г.М., Мельников Д.В.,

Георгий Михайлович Гавриленко, кандидат геолого-минералогических наук, старший научный сотрудник Института вулканологии и сейсмологии РАН. Область научных интересов — гидрогеохимические исследования активных вулканов, морская вулканология, современное вулканогенноосадочное рудообразование.

Дмитрий Владимирович Мельников, старший научный сотрудник того же института. Круг научных интересов охватывает вулканическую геоморфологию, структурную геологию, дистанционные методы исследований, геоинформационные системы.

за извержений вулканов Камчатки и Курильских о-вов вот уже более 15 лет проводится гидрогеохимический мониторинг вулкана Мутновского — одного из самых активных вулканов Южной Камчатки [5-7].

Вулканологам хорошо известно, что гидротермальная деятельность присуща всем обводненным активным вулканам, в недрах которых в межпароксизмальные фазы формируются и функционируют вулкано-гидротермальные системы. Глубинные флюиды, выделяющиеся из магмы при ее дегазации в спокойные периоды, поступают на поверхность в основном в виде пара-газа или растворенные с термальными водами. Именно термальные воды и являются главным объектом наших гидрогеохимических исследований. Состав и количество выделяющихся магматогенных флюидов и соотношение в них тех или иных компонентов зависят от происходящих на глубине процессов, а соответственно состав и свойства той их части, которая поступает на поверхность в растворенном виде с термами, отражает состояние самих вулканов.

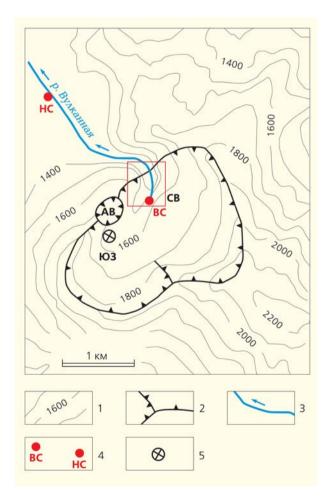
54

На Мутновском, помимо большого количества фумарольных (парово-газовых) выходов, зафиксировано множество разрозненных и разнодебитных, постоянно мигрирующих термальных источников, разгружающихся в речку Вулканную, дренирующую активные его кратеры. Река аккумулирует практически весь растворенный и нерастворенный минеральный материал термальных вод вулкана. Контролируя вариации состава речных вод, можно судить об изменениях общего (интегрального) состава всех термальных источников вулкана и следить за степенью его активности. Иначе говоря, систематический гидрогеохимический мониторинг воды р. Вулканной может использоваться при прогнозе изменений активности вулкана Мутновского. К сожалению, нами пока апробирован лишь среднесрочный (несколько месяцев — два-три года) прогноз.

На практике этот метод представляет собой режимное, ежегодное (как правило в паводковый сезон) гидрогеохимическое опробование речных вод на двух створах: верхнем, расположенном в южной части Северо-Восточного (СВ) кратера, и нижнем, находящемся в 3 км ниже по течению реки, на западном склоне вулкана. В полученных пробах по стандартным гидрохимическим методикам определялись все растворенные макрокомпоненты, в частности такие анионы, как SO_4^{-2} , CI^- , и F^- .

Из собранных за 16 лет гидрогеохимических данных и построенных на их основе графиках видно, что отношения сульфат-иона к галоидным ионам в период 1992—1997 гг. колебались в сравнительно небольших пределах.

После 1997 г. их значения стали увеличиваться, достигнув максимума: на верхнем створе для SO_4^{-2}/F^- в 1998 г. и для SO_4^{-2}/Cl^- в 1999 г. Эти максимумы были зафиксированы с разницей в один год при «шаге» режимных наблюдений, также составлявшем один год. Похожая, но обратная картина наблюдалась для соответствующих отношений и на нижнем створе реки: для SO_4^{-2}/F^- в 1999 г., а для SO_4^{-2}/Cl^- в 1998 г.


Через шесть месяцев после отмеченных максимумов на вулкане произошло извержение, после которого отношения главных анионов в водах р.Вулканной быстро снизились. В конце 2001 и в 2002 г. они стали снова расти. А через полгода последовало повторное усиление активности в Юго-Западном кратере вулкана. Еще в первых числах мая 2003 г. озеро в нем было покрыто льдом и снегом. Спустя несколько дней лед и снег растаяли, а вода прогрелась до 35°С, приняв характерный для кислых вулканических озер бирюзовый цвет. При этом на поверхности наблюдалась активная конвекция кратерноозерных вод (по всей вероятности, за счет усилившейся на дне озера фумарольно-гидротермальной деятельности).

После активной фазы на вулкане вновь наступило затишье, и все рассматриваемые гидрогео-

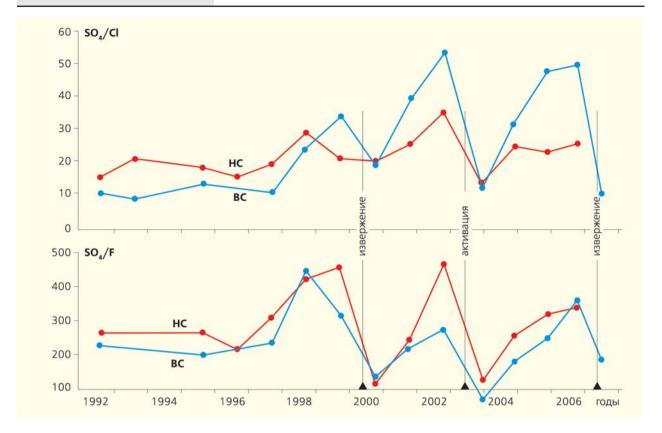
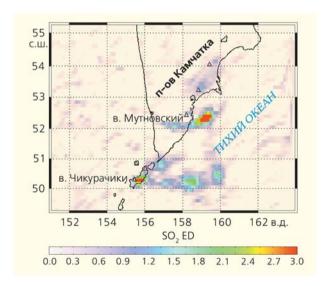

Вулкан Мутновский (вид с северо-запада). 12 июля 2007 г.

Фото Г.М.Гавриленко



Карта-схема вулкана Мутновский:

- 1 горизонтали;
- 2 кромки кратеров;
- 3 речка Вулканная;
- 4 верхний (ВС) и нижний (НС) створы;
- 5 кратерное озеро в Юго-Западном кратере.

Вариации гидрогеохимических параметров за период 1992—2007 гг. с временными отметками произошедших на вулкане в последние годы событий. ВС — данные для верхнего створа; НС — для нижнего створа (см. рис.2).

Интерпретация спутникового снимка (17 апреля 2007 г.), демонстрирующая аномально высокие содержания сернистого газа (SO_2) в атмосфере на высоте 5 км над вулканами Мутновский (Камчатка) и Чикурачуки (Северные Курилы). ЕД — единицы Добсона, используемые для измерения в атмосфере концентрации SO_2 (1 ЕД равна 0.01 мм толщины сжатого слоя озона при 0° С или $2.69 \cdot 10^{20}$ молекул озона на 1 м². Типичное фоновое значение SO_2 в атмосфере J1 ЕД).

химические параметры во второй половине 2003 г. снизились до минимальных значений. Однако на этом вулкан не успокоился. В 2004 г. гидрохимические параметры стали увеличиваться, сохраняя эту тенденцию в 2005 и 2006 гг. Наметившийся в последние три года тренд напомнил нам ситуации перед двумя предыдущими активизациями вулкана в начале 2000-х годов. Поэтому мы не исключали возможность очередного усиления активности вулкана в ближайшие месяцы [8].

В апреле 2007 г. радиотелеметрической сетью Камчатского филиала Геофизической службы РАН в районе Мутновского стал регистрироваться высокий уровень непрерывного спазматического вулканического дрожания. Его значения превышали фон в несколько раз. 16 апреля спутник NOAA-17 зафиксировал к юго-востоку от вулкана пепловое облако размером 22×34 км, которое в дальнейшем стало смещаться в сторону Тихого океана. Кроме того, 10—17 апреля спутник AURA I в атмосфере над Мутновском зарегистрировал мощную эмиссию сернистого газа (SO₂), наблюдавшуюся несколько дней. По данным сотрудника NASA Симона Карна (Simon Carn), абсолютное содержание SO₂ в «облаке» составляло: 10 апреля — 74, 11-го — 103, 12-го — 201, 13-го — 212, 14-го — 111 и 15-го — 116 т с максимальными значениями

ПРИРОДА • № 2 • 2008

16 и 17 апреля — 611 и 488 т соответственно. Эти значения одномоментно зафиксированы во время пролета спутника над вулканом и показывают общую массу SO_2 в данном районе. Кроме того, на снимках наблюдалась эмиссия SO_2 от вулкана Чикурачики (о.Парамушир, Курильские о-ва), которая исключалась при расчете эмиссии газа на Мутновском. Все изложенные данные косвенно свидетельствовали о том, что на вулкане Мутновском, возможно, произошло извержение.

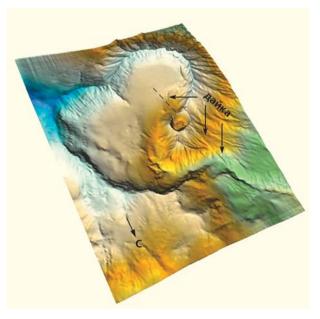
Для проверки этого предположения в двадцатых числах мая 2007 г. на вулкане были проведены полевые работы сотрудниками Института вулканологии и сейсмологии ДВО РАН. В результате исследований было установлено, что в самом активном кратере вулкана — Активной Воронке — действительно произошло извержение, причем взрыв в апреле 2007 г., в отличие от фреатического извержения в марте 2000 г., был преимущественно «сухим» за счет выброса в атмосферу скопившегося над близповерхностными магматическими массами сернистого газа.

Образовавшийся взрывной кратер размерами 180×215 м и глубиной около 30 м оказался врезанным в юго-западную стенку Воронки. На дне и стенках самой Активной Воронки лежали обломки пород материнской постройки вулкана, а на внешних склонах Мутновского был обнаружен свежий пепел серого цвета. Предварительное макро- и микроскопическое его изучение показало, что это мелкий резургентный материал с преобладающей фракцией частиц <0.1 мм, которые главным образом представлены раздробленными пироксеновыми андезитами с небольшой приме-

Воронка взрыва в кратере Активная Воронка. 22 июля 2007 г.

Фото Д.М.Мельникова

сью пемзы. Обломки измененных пород не превышали 10% от общей массы пепла (описание выполнено М.Ю.Пузанковым).


В Юго-Западном и Северо-Восточном кратерах вулкана Мутновского каких-либо изменений в морфологии выявлено не было.

Вулканические события на Мутновском произошли после 40 лет спокойного периода фумарольно-гидротермальной деятельности, которая, однако, характеризовалась аномально высоким

Аэрофотоснимок Мутновского вулкана (16 августа 2003 г.). Красным обведен контур взрывной воронки апрельского извержения в Активной Воронке 2007 г. Стрелки показывают положение дайки [9, 10], отчетливо «читающейся» в рельефе вулканической постройки: на северо-западе по трещине в многолетнем леднике, на юго-востоке — на склоне вулкана.

Фото Н.И.Селиверстова

Цифровая модель рельефа постройки вулкана Мутновский. Стрелками показано [13] положение дайки (построение выполнено Д.В.Мельниковым).

выносом тепла, главным образом конвективного, с магматическими флюидами (1800—1900 МВт), что практически адекватно непрерывному извержению. Поэтому некоторые исследователи [6] этот относительно спокойный период в жизни вулкана квалифицируют как «пассивное извержение».

Такая длительная и мощная массэнергетическая разгрузка на вулкане может поддерживаться кристаллизацией и конвекцией кипящего расплава в магматическом очаге под вулканом за счет периодического пополнения его более глубинной магмой. А усиление активности Мутновского в последние годы, по мнению О.Б.Селянгина, вероятно инициировано внедрением дайки по раскрывающейся (обновляемой) трещине ССЗ—ЮЮВ простирания [9].

Произошедшие на вулкане события совпали по времени с другими событиями, зафиксированными на нем: сходом многолетнего пульсирующего

ледника на дно Северо-Восточного кратера вулкана — в конце 1996—1998 гг.[10]; обрушением крупного ледника и сходом мощного селя по р.Куропатке с северо-восточного внешнего склона в 1996 г.; началом эксплуатации Мутновского геотермального месторождения — пуском Верхне-Мутновской ГеоЭС в 1999 г. и Мутновской ГеоЭС в 2002 г. [11, 12].

Эти события не были главными причинами, определяющими возобновление вулканической деятельности Мутновского, но они могли послужить своеобразными «катализаторами», спровоцировавшими реализацию на поверхности глубинных процессов.

В конце статьи следует отметить, что сейсмостанцией в районе Мутновского с апреля 2007 г. и до настоящего времени постоянно регистрируется непрерывное повышенное вулканическое дрожание — редкое явление в последние десятилетия.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 06-05-96002) и Дальневосточного отделения РАН (проект 06-III-B-08-368).

Литература

- 1. Гавриленко Г.М. Вулкан Мутновский проснулся // Природа. 2000. №12. С.41—43.
- 2. Гавриленко Г.М. // Вулканология и сейсмология. 2004. №6. С.49—64.
- 3. *Гавриленко Г.М., Гавриленко М.Г.* Изменение отношений макрокомпонентов в термальных водах вулкана Мутновский, предшествующее его активным фазам (Камчатка) // Подземная гидросфера: Материалы Всероссийского совещания по подземным водам востока России. Иркутск, 2006. С.17—20.
- 4. Гавриленко Г.М., Мельников Д.В., Зеленский М.Е., Тавиньо Л. // Вестник КРАУНЦ. Науки о Земле. 2003. № 2. С.118—121.
- 5. Мелекесцев И.В., Брайцева О.А., Пономарева В.В. // Вулканология и сейсмология. 1987. №3. С.3—18.
- 6. Поляк Б.Г. Геотермические особенности области современного вулканизма (на примере Камчатки). М., 1966.
- 7. Селянгин О.Б. // Вулканология и сейсмология. 1993. №1. С.17—35.
- 8. *Gavrilenko G.M., Bortnikova S.B.* 2000—2006 hydrochemical monitoring data obtained from the active crater of Mutnovsky Volcano, Kamchatka, after the 2000 eruption // Proceedings of the 12th Intern. Symp. on Water-Rock Interaction, 13—18 August. Chine. 2007. P.105—109.
- 9. Селянгин О.Б. Структура, вещество и эволюция магмопроводящих систем вулканов Мутновский и Горелый // Магматические очаги и надочаговые зоны вулканов. Петропавловск-Камчатский, 2007.
- 10. Гавриленко Г.М., Зеленский М.Е., Муравьев Я.Д. // Вулканология и сейсмология. 2001. №2. С.18—23.
- 11. *Кирюхин А.В., Москалев Л.К., Поляков А.Ю., Чернев И.И.* Изменения термогидродинамического и газогидрохимического режима резервуара в процессе эксплуатации Мутновского геотермального месторождения // Подземная гидросфера: Материалы Всероссийского совещания по подземным водам востока России. Иркутск, 2006. C.267—270.
- 12. Кугаенко Ю.А., Мельников Д.В. // География и природные ресурсы. 2006. № 3. С.30—37.
- 13. Мельников Д.В. Визуализации структурно-геоморфологического строения вулканических построек (на примере Мутновского вулкана, Камчатка) // Вулканизм, сейсмичность и окружающая среда. Петропавловск-Камчатский, 2002. С.16—20.