ПРОИСХОЖДЕНИЕ ЩЕЛОЧНО-БАЗАЛЬТОВЫХ МАГМ С КОНВЕРГЕНЦИЕЙ «ВНУТРИПЛИТНЫХ» И «ОСТРОВОДУЖНЫХ» ГЕОХИМИЧЕСКИХ ПРИЗНАКОВ (ВУЛКАН БОЛЬШОЙ ПАЯЛПАН, СРЕДИННЫЙ ХРЕБЕТ КАМЧАТКИ)

 1 А.Б. Перепелов, 2 М.Ю. Пузанков, 2 А.В. Колосков, 3 А.В. Иванов, 2 Г.Б. Флеров, 1 Э.Ю. Балуев, 2 Т.М. Философова

¹ Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, region@igc.irk.ru
² Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, puzankov@kscnet.ru
³ Институт земной коры СО РАН, Иркутск, aivanov@crust.irk.ru

Введение. Среди магматических комплексов пород тылового вулканического пояса Срединного хребта Камчатки распространены N_2 - Q_1 щелочно-базальт-трахит-комендитовая [Volynets, 1994] и Q_3 -O₄ щелочно-оливин-базальтовая серии [Volvnets, 1994; Churikova et al., 2001; Ivanov et al., 2004; Волынец А., 2006]. Базальтоиды К-Na субщелочных и щелочных серий Срединного хребта отличаются переходными вещественными характеристиками между «внутриплитными» и «островодужными» геохимическими типами магматических пород, а их происхождение в тесной пространственно-временной ассоциации с типично островодужными вулканическими сериями до сих пор дискутируется. Одними исследователями при объяснении условий формирования исходных базальтовых магм переходного типа для Срединного хребта предполагается реализация двухкомпонентной модели источников вещества (метасоматизированной мантии N-MORB типа и OIB источника) [Volynets, 1994], другие авторы предлагают к анализу трехкомпонентную модель (OIB, N-MORB, флюид) [Churikova et al., 2001; Волынец А., 2006]. Новые геолого-геохимические исследования позднеплейстоцен-голоценовых щелочно-базальтовых комплексов пород Срединного хребта Камчатки (2005 г.) позволяют рассмотреть проблему происхождения исходных для них магм с конвергенцией «внутриплитных» и «островодужных» вещественных признаков на примере крупного щитового вулкана Большой Паялпан, локализованного на северном фланге Ичинской группы вулканов [Огородов и др., 1972].

Геологическое развитие и возраст. Щитовая постройка вулкана Большой Паялпан имеет удлиненную форму с простиранием лавовых моноклиналей от вершины на северо-запад (рис. 1). слагается лавово-пирокластическими и экструзивно-дайковыми Фундамент вулканического центра Белоголовский $(N_2^3-Q_1)$ и крупного щитового вулкана Носичан (N_2^{1-2}) . Породы первого из них принадлежат К-Na субщелочной и щелочной сериям (щелочные оливиновые базальты, трахиандезиты, трахиты и комендиты) [Volynets, 1994], а вулкан Носичан представлен породами умереннокалиевой известково-щелочной серии ІАВ типа (базальты, андезиты, дациты и риолиты, игнимбриты, обсидианы и перлиты) [Ivanov et al., 2004]. Развитие ледниковых каров и признаки излияния лавовых потоков вулкана Большой Паялпан в ледовые массы, наряду с хорошей сохранностью вершинной части и лавовых моноклиналей постройки, позволяет оценивать возраст его формирования как верхнечетвертичный (Q₃). Вулкан Большой Паялпан сформировался в результате исключительно интенсивного и непрерывного излияния многочисленных лавовых потоков. Низкая вязкость расплавов повышенной щелочности определяет высокую подвижность лав и их распространение на расстояние до 10 км от центра извержения. Мощность отдельных лавовых потоков часто очень невелика и варьирует в пределах от 0.5 до 2 м, лишь редко увеличиваясь до 4-6 м на их фронтальных участках. Суммарная мощность лавового разреза постройки достигает 600 м, а количество потоков определяется в 80-90 единиц. На участках развития крупных ледниковых каров, вскрывающих разрез вулкана вблизи его центра, на юго-западной и северной окраине постройки обнажаются подводящие каналы – некки и дайки. Объем изверженного материала вулкана оценивается в 20 км³ [Огородов и др., 1972].

Петрография и минералогия. Базальтоиды вулкана в моногенных лавовых разрезах имеют мелкопорфировую структуру, обусловленную наличием осколков и идиоморфных вкрапленников оливина (Ol, до 10-14 об.%). Структура основной массы в них интерсертальная, реже трахитовая с большим количеством микролитов плагиоклаза (Pl), в меньшей степени клинопироксена (Срх), титаномагнетита (TiMgt) и мельчайших зерен апатита (Ар). Кристаллизация базальтовых магм вулкана Большой Паялпан начинается с формирования субликвидусных фаз крупных вкрапленников Ol (до 2-4 мм) и мелких включений в них хромистого магнетита (базальты некка) или шпинели (Sp)

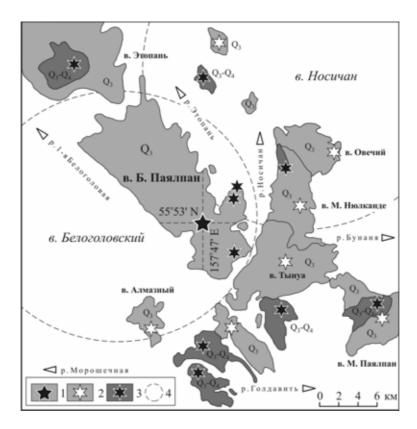


Рис. 1. Схема локализации верхнеплейстоцен-голоценовых (?) вулканических построек Паялпанской вулкано-тектонической структуры.

Схема составлена на основе Государственной геологической карты М 1:200 000, Лист № N-57-II, с изменениями авторов. Условные обозначения: 1 — лавовые толщи и центр извержений вулкана Большой Паялпан (г. Белоголовая, 1906,6 м); 2 — верхнеплейстоценовые (Q₃) вулканические постройки и центры извержений; 3 — верхнеплейстоцен-голоценовые (Q₃-Q₄?) вулканические постройки и центры извержений, ареальные конусы; 5 — контуры распространения лавовопирокластических толщ щитовых вулканов Белоголовский (N₂-Q₁) и Носичан (N₂).

(лавы базальтов). На следующем этапе кристаллизации в малоглубинной камере или непосредственно в процессе извержений происходит массовое формирование лейст Pl и в меньшем количестве субфенокристаллов и микролитов Срх и Ol. На заключительном этапе кристаллизации образуются микролиты Pl, Cpx и TiMgt, а в раскристаллизованном стекле основной массы присутствуют мельчайшие выделения K-Na полевых шпатов. Составы Ol от центральных зон вкрапленников (Fo 83-79) и субфенокристаллов (Fo 79-76) к их краевым зонам (Fo 70-67) и далее к микролитам (Fo 59-57) изменяются с устойчивым увеличением железистости минерала. Включения Sp из вкрапленников Ol отвечают по составам железистым хромпикотитам (Al2O3 18-23%, Cr2O3 20-21 %, MgO 5,5-8 %), а в хромистых магнетитах содержания этих компонентов составляют соответственно (2,6-6,5%; до 9,8%; до 3-3,8%). Микролиты TiMgt из основной массы отличаются высокими содержаниями ТіО2 (до 21-23 мас.%). Субфенокристаллы (лейсты) Р1 представлены в ядрах зерен битовнитами и лабрадорами (Ап 81-79 Ог 0.6-0,8) и сменяются более кислыми лабрадорами и андезинами в краевых зонах кристаллов (An 67-65 Or 1,1-1,3). Микролиты Pl близки по составам краевым зонам субфенокристаллов (An 56-49 Or 3-3,3), а краевых зонах микролитов и в зонах раскристаллизации стекла основной массы полевые шпаты имеют составы Na-санидинов (Ab 36-41 Or 47-66). Клинопироксены базальтов отвечают по составам титанистым авгитам (Wo 42-45 Fs 12-15) и кристаллизуются с переходом к салитовым составам (Wo 45.8-46.2 Fs 13.7-13.8) с возрастанием содержаний TiO₂ (до 2-2,5 мас.%). Стекло основной массы базальтов, содержащее микролиты TiMgt, Ар и K-Na полевых шпатов достигает высоких по щелочности фонолитовых и трахитовых составов (SiO₂=57.2-59.7 и Na₂O+K₂O=12.8-12.9 мас.%).

Классификация пород. Все составы базальтоидов вулкана Большой Паялпан являются нефелин- $(Ne_N=0.3-3.6~\%)$ и андезин- нормативными (№ Pl An $_N=39-43$), а около 80% из 40 проб отвечают параметрам $(Na_2O+K_2O)-2 \ge K_2O$ и $(Na_2O+K_2O) \ge 5$ (мас. %). Эти характеристики, согласно классификации IUGS и поправок Терминологической комиссии Петрографического Комитета РАН

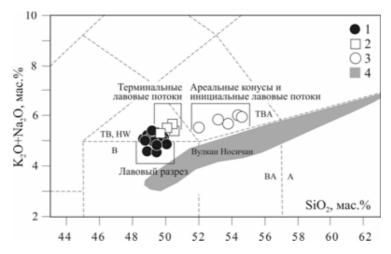


Рис. 2. Классификационная диаграмма (Ka₂O+Na₂O)-SiO₂ (TAS) [Le Bas et al., 1986] для пород вулкана Большой Паялпан.

Поля составов пород на диаграмме TAS: B – базальты, BA – андезито-базальты, A – андезиты, TB, HW – трахибазальты, гавайиты, TBA – трахиандезито-базальты, муджиериты. Условные обозначения: 1 – щелочные оливиновые базальты лавовых разрезов вулкана Большой Паялпан (Q_3) , 2 – щелочные оливиновые базальты терминальных лавовых потоков, 3 – трахиандезито-базальты инициальных лавовых потоков и ареальных конусов вулкана Большой Паялпан $(Q_3, Q_3-Q_4?)$, 4 – поле составов пород вулкана Носичан (базальты, андезито-базальты, андезиты и их игнимбриты, дациты), нижний вулканогенный ярус (N_2) .

[Классификация магматических.., 1997], демонстрируют принадлежность базальтов вулкана Большой Паялпан к К-Na умеренно-щелочной серии (рис. 2). Ранее О.Н. Волынцом [Волынец, 1993; Volynets, 1994] верхнеплейстоцен-голоценовые К-Na субщелочные и щелочные базальтоиды Срединного хребта Камчатки были объединены в составе щелочно-оливин-базальтовой серии пород. Это определение подчеркивает особенности химизма и минералогии всей группы исследуемых базальтоидов и не противоречит установлению их генетической общности. В составе К-Na щелочно-оливин-базальтовой серии пород вулкана Большой Паялпан, согласно с выводами предшествующих исследователей, мы выделяем щелочные оливиновые базальты, как Ne-нормативные породы основного состава, содержащие значительное количество фенокристаллов Ol, и трахиандезито-базальты, в качестве более кремнекислых Ну-нормативных разностей.

Геохимические особенности.

Базальтоиды вулкана Большой Паялпан, по отношению к базальтоидам островодужного геохимического типа (IAB), характеризуются повышенной щелочностью (Na₂O+K₂O=4.81-5.65 мас.%, Na₂O/K₂O=1.91-2.96), высокими концентрациями TiO₂ (1.44-1.70 мас.%), P₂O₅ (0.35-0.56 мас.%) и высокой магнезиальностью (Мд# 53-63) (табл. 1). Их редкоэлементный состав отличается повышенными концентрациями Ni, Cr, Nb, Ta, Zr, Hf, Th и TR, а степень фракционирования в них редкоземельных элементов в сравнении с IAB (La_N/Yb_N=2.8-3.5) является значительно более выраженной (6.2-7.1). На графиках распределения магматофильных элементов для базальтоидов вулкана Большой Паялпан обнаруживается конвергенция «островодужных» и «внутриплитных» вещественных характеристик (рис. 3). В сравнении с умереннокалиевыми базальтами вулкана Носичан, для которых характерны черты распределения элементов типичные для базальтоидов субдукционных обстановок, а именно – минимумы нормированных концентраций Th, Nb, Ta, Zr, Hf и Ті и максимумы в распределении Ва, K, Рb и Sr, щелочные базальты вулкана Большой Паялпан обнаруживают существенно более «сглаженные» формы графиков. Все микроэлементные аномалии становятся менее выраженными и сближаются с трендами распределения элементов, характерными для OIB. Конвергенция геохимических характеристик базальтоидов вулкана Большой Паялпан отчетливо выражается и в значениях маркирующих редкоэлементных отношений. Исследуемые базальты имеют, к примеру, значительно более низкие величины отношений Ba/Nb (26-33), Sr/Nb (39-49), Ва/Zr (2.8-3.3) и высокие Th/U (2.9-3.7) в сравнении с таковыми для островодужных умереннокалиевых базальтов вулкана Носичан (134-141; 150-396; 6.0-6.7; 2.3-2.4, соответственно). Следует отметить, что уровни концентраций в щелочных и умереннокалиевых базальтах района таких литофильных элементов, как Ba, Pb и Sr, имеющих наибольшее сродство с флюидом, оказываются наиболее близкими.

№ обр.	К- 31-05	ПП- 2508	ПП- 2715	ПП- 2550	ПП- 2541		№ обр.	К- 31-05	ПП- 2508	ПП- 2715	ПП- 2550	ПП- 2541
Порода	AB	AB	AB	AB	TAB		Порода	AB	AB	AB	AB	TAB
SiO ₂	48.69	49.71	49.75	50.40	53.69		Y	21	20	22	22	20
TiO ₂	1.60	1.47	1.63	1.67	1.35		Zr	154	147	155	163	145
Al_2O_3	16.31	16.55	16.36	17.55	17.30		Nb	16.2	15.0	14.5	17.1	12.0
Fe_2O_3	4.91	4.57	6.29	3.94	4.19		Cs	0.31	0.31	0.42	0.26	0.42
FeO	4.85	5.03	3.59	5.39	4.67		Ba	436	488	481	502	438
MnO	0.16	0.16	0.16	0.15	0.14		La	18.11	18.14	19.46	20.51	16.76
MgO	8.86	8.22	7.54	5.64	4.51		Ce	40.92	40.89	43.49	46.80	37.67
CaO	8.96	8.62	8.81	9.06	7.32		Pr	5.30	5.27	5.73	6.03	4.91
Na ₂ O	3.56	3.54	3.65	3.91	4.25		Nd	22.41	21.92	23.85	25.63	20.60
K_2O	1.46	1.51	1.46	1.43	1.41		Sm	5.09	5.20	5.52	5.80	4.76
P_2O_5	0.38	0.41	0.49	0.50	0.34		Eu	1.60	1.62	1.74	1.81	1.48
LOI	0.27	0.18	0.24	0.39	0.67		Gd	4.68	4.69	5.13	5.37	4.36
Сумма	100.01	99.97	99.97	100.02	99.85		Tb	0.71	0.71	0.78	0.79	0.66
Be	1.4	1.4	1.5	1.4	1.4		Dy	4.08	4.11	4.38	4.61	3.91
Sc	26	25	24	27	20		Ho	0.80	0.82	0.85	0.90	0.78
\mathbf{V}	247	248	236	271	206		Er	2.12	2.21	2.21	2.35	2.10
Cr	248	237	196	87	47		Tm	0.31	0.31	0.32	0.33	0.30
Co	38	38	36	29	31		Yb	1.84	1.91	1.93	1.98	1.84
Ni	132	128	106	35	52		Lu	0.27	0.28	0.28	0.29	0.27
Cu	39	66	41	65	57		Hf	3.80	3.61	3.47	3.65	3.65
Zn	79	85	95	91	83		Ta	0.96	0.84	0.83	0.86	0.70
Ga	19	18	18	20	21		\mathbf{W}	0.28	0.22	0.27	0.17	0.21
Ge	1.4	1.4	1.4	1.5	1.4		Pb	3.57	4.29	4.63	4.32	4.60
Rb	25	25	24	21	22		Th	1.77	1.90	2.00	2.31	2.09
Sr	638	676	711	766	570	_	U	0.59	0.59	0.68	0.63	0.65

Примечание. Наименование пород: AB – щелочной оливиновый базальт, ТВА – трахиандезито-базальт. Координаты точек: ПП-2508 (H=1234 м, 55°53.641'N, 157°50.058'E), ПП-2715 (H=1868 м, 55°52.523'N, 157°47.313'E), ПП-2550 (H=1540 м, 55°53.562'N, 157°47.552'E), ПП-2541 (H=1360 м, 55°53.474'N, 157°47.986'E). Анализы выполнены в Институте геохимии СО РАН: петрогенные компоненты - методом RFA (аналитик Климова А.К.), FeO – методом титрования (Коваль Л.П.), редкие элементы - методом ICP-MS в Центре коллективного пользования Иркутского научного центра СО РАН на масс-спектрометре с высоким разрешением ELEMENT 2 Finnigan MAT, Germany (аналитики: Чувашова Л.А., Смирнова Е.В., Ложкин В.И., Мысовская И.Н.). Контроль ICP-MS анализа проводился с использованием стандартных образцов BHVO-1, JB-2, BIR-1, JA-1.

Модель происхождения щелочно-базальтовых магм вулкана Большой Паялпан. Важным условием при разработке любых моделей петрогенезиса щелочных базальтоидов Срединного хребта Камчатки является их локализация на участках развития предшествующего островодужного магматизма. В районе вулкана Большой Паялпан островодужный магматизма заканчивает свое развитие в плиоцене с формированием дифференцированной умеренно-калиевой серии пород вулкана Носичан. Следующий этап вулканической активности связан здесь уже с образованием щелочно-базальт-трахитовых комплексов (N2-Q1), а собственно исследуемое вулканическое сооружение, сложенное лавами К-Na щелочно-оливин-базальтовой серии, сформировано после перерыва в магматическом развитии района. Геохимические особенности магматических пород всех возрастных этапов демонстрируют определяющую роль в их образовании вещества мантии, метасоматизированной в процессе субдукции и вторично обогащенной рядом литофильных элементов, имеющих высокое сродство с гидратированным флюидом (Ba, K, Pb, Sr). Вместе с тем, начиная с N_2 - Q_1 возрастного интервала, вулканические комплексы обладают рядом таких вещественных характеристик, которые сближают их с магмами ОІВ типа (повышенные концентрации HFS элементов, LREE, Th). Простые расчеты показывают, что составы щелочных базальтов вулкана Большой Паялпан могут быть получены с участием до 70% вещества ІАВ типа и только до 30% вещества, сходного с ОІВ (рис. 3). Близкие результаты показаны и ранее при установлении пропор-

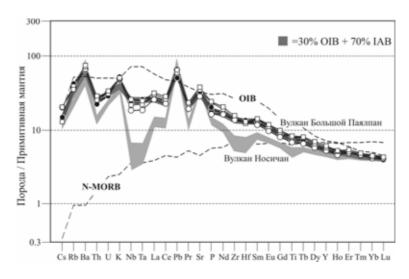


Рис. 3. Диаграммы распределения магматофильных элементов для щелочных базальтоидов вулкана Большой Паялпан и базальтов островодужного геохимического типа вулкана Носичан (вулканогенный фундамент).

Содержания элементов в породах (г/т) нормированы на их концентрации в примитивной мантии по [Sun, McDonough, 1989]. Составы N-MORB и OIB приняты по [Sun, McDonough, 1989]. Рекомендованные для нормирования содержания в примитивной мантии Pb=0.071 г/т. Темным полем (30%OIB+70%IAB) показана область графиков распределения элементов для промежуточных составов базальтоидов, отвечающих модели формирования расплавов вулкана Большой Паялпан в области «fertile mantle» по [Ringwood, 1991].

ций источников вещества для обогащенных базальтоидных магм других районов Срединного хребта [Churikova et al., 2001; Волынец А., 2006]. Главными вопросами при разработке модели формирования щелочно-базальтовых магм в структуре островодужного вулканического пояса остаются выяснение причин участия в магмообразовании нескольких самостоятельных или одного гибридного источника мантийного вещества, а также выяснение связи этапов щелочно-базальтового магматизма в Срединном хребте с особенностями геодинамического развития территории. Предлагаемая к рассмотрению модель формирования щелочно-базальтовых магм вулкана Большой Паялпан предполагает, что в интервале N_1^{2-3} - N_2^{-1} после завершения развития E_3 - N_1 островодужного вулканического пояса в литосфере континентального типа реализуются процессы растяжения или пассивного рифтогенеза. На этом этапе происходит формирование гетерогенной мантии «fertile mantle» [Ringwood, 1991], образованной в результате внедрения в область метасоматизированной мантии N-MORB типа недеплетированного астеносферного вещества. В условиях снижения давления и возрастания температурных градиентов магмообразование реализуется без участия подтока гидратированного флюида в линейной зоне интенсивно метасоматизированной и частично гибридизированной мантии. Разделенные во времени этапы щелочно-базальтового магматизма N₂-Q₁ (вулкан Белоголовский) и Q₃-Q₄ (вулкан Большой Паялпан) предполагают развитие режима растяжения в тыловой области островодужной системы не только после завершения Е₃-N₁ субдукции, но и в период новых N_2 - Q_4 субдукционных процессов.

Исследования выполнены при финансовой поддержке РФФИ (гранты 04-05-64800, 05-05-64477), СО РАН (Интеграционный проект № 6.9) и ДВО РАН (проекты 06-I-П17-074 и 06-III-А-08-328). Авторы благодарят начальника Центрально-Камчатской геолого-съемочной партии М.Е. Бояринову за помощь в организации экспедиционных исследований.

Список литературы

Волынец А.О. Плейстоцен-голоценовый вулканизм Срединного хребта Камчатки: вещественный состав и геодинамическая модель. Автореферат диссертации на соискание уч. степени кандидата геол.-мин. наук. М: МГУ, 2006. 23 с.

Волынец О.Н. Петрология и геохимическая типизация вулканических серий современной островодужной системы: Автореферат диссертации на соискание уч. степени доктора геол.-мин. наук. М.: МГУ. 1993. 67 с.

Классификация магматических (изверженных) пород и словарь терминов. М.:Недра, 1997. 248 с.

Огородов Н.В., Кожемяка Н.Н., Важеевская А.А., Огородова А.С. Вулканы и четвертичный вулканизм Срединного хребта Камчатки. М.: Наука, 1972. 191 с.

Churikova T., Dorendorf F., Worner G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation // Journal of Petrology. 2001. V.42. № 8. P. 1567-1593.

Ivanov A.V., Perepelov A.B., Puzankov M.Yu., Yasnygina T.A., Malykh Yu.M., Rasskazov S.V. Rift-and arc-type basaltic volcanism of the Sredinny ridge, Kamchatka: case study of the Payalpan volcanotectonic structure // Metallogeny of the Pacific Nortwest: tectonics, magmatism and metallogeny of active continental margins. Vladivostok: Dalnauka. 2004. C. 345-349.

LeBas M.J., LeMaitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkalisilica diagram // J. Petrol. 1986. V. 27. P. 745–750.

Ringwood A.E. Phase transformations and their bearing on the constitution and dynamics of the mantle // Geochim. Cosmochim. Acta. 1991. V. 55. P. 2083-2110.

Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes // Magmatism in the Ocean Basins. Geological Society special publication № 2. Blackwell Scientific Publications. 1989. P. 313-346.

Volynets O.N. Geochemical types, petrology and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka island-arc system // International Geological Review. 1994. V.36. № 4. P. 373-405.